These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implication of alpha-helix formation for membrane fusion. Takahashi S Biochemistry; 1990 Jul; 29(26):6257-64. PubMed ID: 2207071 [TBL] [Abstract][Full Text] [Related]
7. Effects on mollicutes (wall-less bacteria) of synthetic peptides comprising a signal peptide or a membrane fusion peptide, and a nuclear localization sequence (NLS) -- a comparison with melittin. Béven L; Chaloin L; Vidal P; Heitz F; Wróblewski H Biochim Biophys Acta; 1997 Oct; 1329(2):357-69. PubMed ID: 9371427 [TBL] [Abstract][Full Text] [Related]
8. Specificity of amphiphilic anionic peptides for fusion of phospholipid vesicles. Murata M; Takahashi S; Shirai Y; Kagiwada S; Hishida R; Ohnishi S Biophys J; 1993 Mar; 64(3):724-34. PubMed ID: 8471724 [TBL] [Abstract][Full Text] [Related]
9. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model. Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492 [TBL] [Abstract][Full Text] [Related]
10. Cytolytic peptides induce biphasic permeability changes in mammalian cell membranes. Su M; He C; West CA; Mentzer SJ J Immunol Methods; 2001 Jun; 252(1-2):63-71. PubMed ID: 11334966 [TBL] [Abstract][Full Text] [Related]
11. pH-dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin. Murata M; Sugahara Y; Takahashi S; Ohnishi S J Biochem; 1987 Oct; 102(4):957-62. PubMed ID: 3436962 [TBL] [Abstract][Full Text] [Related]
12. pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers. Han X; Tamm LK J Mol Biol; 2000 Dec; 304(5):953-65. PubMed ID: 11124039 [TBL] [Abstract][Full Text] [Related]
14. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Zhu X; Zhang L; Wang J; Ma Z; Xu W; Li J; Shan A Acta Biomater; 2015 May; 18():155-67. PubMed ID: 25735802 [TBL] [Abstract][Full Text] [Related]
15. Membrane fusion induced by mutual interaction of the two charge-reversed amphiphilic peptides at neutral pH. Murata M; Kagiwada S; Takahashi S; Ohnishi S J Biol Chem; 1991 Aug; 266(22):14353-8. PubMed ID: 1860844 [TBL] [Abstract][Full Text] [Related]
16. Melittin-Induced Permeabilization, Re-sealing, and Re-permeabilization of E. coli Membranes. Yang Z; Choi H; Weisshaar JC Biophys J; 2018 Jan; 114(2):368-379. PubMed ID: 29401434 [TBL] [Abstract][Full Text] [Related]
17. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. Sammalkorpi M; Lazaridis T Biochim Biophys Acta; 2007 Jan; 1768(1):30-8. PubMed ID: 16999933 [TBL] [Abstract][Full Text] [Related]
19. Structure of influenza haemagglutinin at the pH of membrane fusion. Bullough PA; Hughson FM; Skehel JJ; Wiley DC Nature; 1994 Sep; 371(6492):37-43. PubMed ID: 8072525 [TBL] [Abstract][Full Text] [Related]
20. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Gray C; Tatulian SA; Wharton SA; Tamm LK Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]