BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 7488648)

  • 1. Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state.
    Khan S; O'Brien PJ
    Biochim Biophys Acta; 1995 Nov; 1269(2):153-61. PubMed ID: 7488648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatocyte injury resulting from the inhibition of mitochondrial respiration at low oxygen concentrations involves reductive stress and oxygen activation.
    Niknahad H; Khan S; O'Brien PJ
    Chem Biol Interact; 1995 Oct; 98(1):27-44. PubMed ID: 7586049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroacetaldehyde-induced hepatocyte cytotoxicity. Mechanisms for cytoprotection.
    Sood C; O'Brien PJ
    Biochem Pharmacol; 1994 Aug; 48(5):1025-32. PubMed ID: 8093090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and specific efflux of glutathione before hepatocyte injury induced by hypoxia.
    Khan S; O'Brien PJ
    Biochem Biophys Res Commun; 1997 Sep; 238(2):320-2. PubMed ID: 9299503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevention of cyanide-induced cytotoxicity by nutrients in isolated rat hepatocytes.
    Niknahad H; Khan S; Sood C; O'Brien PJ
    Toxicol Appl Pharmacol; 1994 Oct; 128(2):271-9. PubMed ID: 7940542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylenediamine induced hepatocyte cytotoxicity redox. Cycling mediated oxidative stress without oxygen activation.
    Sood C; Khan S; O'Brien PJ
    Biochim Biophys Acta; 1997 Jun; 1335(3):343-52. PubMed ID: 9202197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of tirapazamine (SR 4233, Win 59075)-induced hepatocyte toxicity under low oxygen concentrations.
    Khan S; O'Brien PJ
    Br J Cancer; 1995 Apr; 71(4):780-5. PubMed ID: 7710944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the cellular redox state in modulating acute ethanol toxicity in isolated hepatocytes.
    Khan S; O'Brien PJ
    Clin Biochem; 1999 Oct; 32(7):585-9. PubMed ID: 10614722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of chloroacetaldehyde-induced cytotoxicity in isolated rat hepatocytes.
    Sood C; O'Brien PJ
    Biochem Pharmacol; 1993 Nov; 46(9):1621-6. PubMed ID: 8240419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic mechanisms of methanol/formaldehyde in isolated rat hepatocytes: carbonyl-metabolizing enzymes versus oxidative stress.
    MacAllister SL; Choi J; Dedina L; O'Brien PJ
    Chem Biol Interact; 2011 May; 191(1-3):308-14. PubMed ID: 21276436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the hepatocellular redox state in the hepatic triglyceride accumulation following acute ethanol administration.
    Ryle PR; Chakraborty J; Thomson AD
    Biochem Pharmacol; 1986 Sep; 35(18):3159-64. PubMed ID: 3753521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism.
    Mira L; Maia L; Barreira L; Manso CF
    Arch Biochem Biophys; 1995 Apr; 318(1):53-8. PubMed ID: 7726572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylene blue protection against hypoxic injury in primary cultures of rat hepatocyte monolayers.
    Muratsubaki H; Yajima N; Yoneda H; Enomoto K; Tezuka T
    Cell Biochem Funct; 2008; 26(2):275-8. PubMed ID: 17614098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol potentiates hypoxic liver injury: role of hepatocyte Na(+) overload.
    Carini R; De Cesaris MG; Spendore R; Albano E
    Biochim Biophys Acta; 2000 Nov; 1502(3):508-14. PubMed ID: 11068192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of SR 4233-induced hepatocyte toxicity under aerobic versus hypoxic conditions.
    Silva JM; O'Brien PJ
    Br J Cancer; 1993 Sep; 68(3):484-91. PubMed ID: 8394729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro.
    Garofalo O; Cox DW; Bachelard HS
    J Neurochem; 1988 Jul; 51(1):172-6. PubMed ID: 3379400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.
    Moridani MY; Cheon SS; Khan S; O'Brien PJ
    Chem Biol Interact; 2003 Jan; 142(3):317-33. PubMed ID: 12453669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.