BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7488742)

  • 1. Antinociceptive defect of beige-J mice reversed by i.c.v. IP3 or myo-inositol.
    Raffa RB; Martinez RP
    Neuroreport; 1995 Jul; 6(10):1434-6. PubMed ID: 7488742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphine antinociception is mediated through a LiCl-sensitive, IP3-restorable pathway.
    Raffa RB; Martinez RP
    Eur J Pharmacol; 1992 May; 215(2-3):357-8. PubMed ID: 1327809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opioid efficacy is linked to the LiCl-sensitive, inositol-1,4,5-trisphosphate-restorable pathway.
    Raffa RB; Connelly CD; Martinez RP
    Eur J Pharmacol; 1992 Jul; 217(2-3):221-3. PubMed ID: 1330592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of analgesic response of C57BL/6J-bgJ (beige-J) mice to morphine by carbachol.
    Raffa RB; Mathiasen JR; Vaught JL
    Eur J Pharmacol; 1987 Sep; 141(3):507-10. PubMed ID: 3666044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The analgesic defect of C57BL/6J-bgJ/bgJ (beige-J: Chediak-Higashi syndrome) mice transmitted by adoptive transfer of spleen cells to normal littermates.
    Raffa RB; Kimball ES; Mathiasen JR
    Life Sci; 1988; 42(12):1231-6. PubMed ID: 3347148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the type 1 inositol 1,4,5-trisphosphate receptor gene suppresses the morphine-induced antinociception in the mouse.
    Aoki T; Narita M; Ohnishi O; Mizuo K; Narita M; Yajima Y; Suzuki T
    Neurosci Lett; 2003 Oct; 350(2):69-72. PubMed ID: 12972155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obligatory role of B cells and adherent accessory cells in the transfer of a defect in morphine-mediated antinociception in C57BL/6J-bg/bg (beige-J) mice.
    Kimball ES; Raffa RB
    J Neuroimmunol; 1989 May; 22(3):185-92. PubMed ID: 2784797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C57BL/6J-bgJ (beige) mice: differential sensitivity in the tail flick test to centrally administered mu- and delta-opioid receptor agonists.
    Mathiasen JR; Raffa RB; Vaught JL
    Life Sci; 1987 May; 40(20):1989-94. PubMed ID: 3033418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antinociceptive and morphine modulatory actions of spinal orphanin FQ.
    Jhamandas KH; Sutak M; Henderson G
    Can J Physiol Pharmacol; 1998 Mar; 76(3):314-24. PubMed ID: 9673795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat.
    Fürst S; Riba P; Friedmann T; Tímar J; Al-Khrasani M; Obara I; Makuch W; Spetea M; Schütz J; Przewlocki R; Przewlocka B; Schmidhammer H
    J Pharmacol Exp Ther; 2005 Feb; 312(2):609-18. PubMed ID: 15383636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of GABA receptor antagonists injected spinally on antinociception induced by opioids administered supraspinally in mice.
    Suh HW; Kim YH; Choi YS; Choi SR; Song DK
    Eur J Pharmacol; 1996 Jun; 307(2):141-7. PubMed ID: 8832215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial antinociceptive cross-tolerance to intracerebroventricular beta-endorphin in mice tolerant to systemic morphine.
    Tseng LF; Lin JJ; Collins KA
    Eur J Pharmacol; 1993 Sep; 241(1):63-70. PubMed ID: 8223926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antinociceptive and antitussive effects of morphine in the DA-bg/bg (beige) rat.
    Kamei J; Morita K; Saitoh A; Suzuki T; Nagase H
    Eur J Pharmacol; 1996 Apr; 300(1-2):75-8. PubMed ID: 8741168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antinociceptive effects of ketamine-opioid combinations in the mouse tail flick test.
    Dambisya YM; Lee TL
    Methods Find Exp Clin Pharmacol; 1994 Apr; 16(3):179-84. PubMed ID: 8046951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of spinal opioid antinociception by intrathecal beta-endorphin1-27 in the rat.
    Hong M; Sutak M; Jhamandas K
    Br J Pharmacol; 1993 Apr; 108(4):1137-42. PubMed ID: 8485623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynorphin A(1-17) mediates midazolam antagonism of morphine antinociception in mice.
    Rady JJ; Fujimoto JM
    Pharmacol Biochem Behav; 1993 Oct; 46(2):331-9. PubMed ID: 7903457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of intracellular calcium in acute thermal pain perception.
    Galeotti N; Bartolini A; Ghelardini C
    Neuropharmacology; 2004 Nov; 47(6):935-44. PubMed ID: 15527827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible involvement of mu1-opioid receptors in the fentanyl- or morphine-induced antinociception at supraspinal and spinal sites.
    Narita M; Imai S; Itou Y; Yajima Y; Suzuki T
    Life Sci; 2002 Apr; 70(20):2341-54. PubMed ID: 12150199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic and additive interactions of the cannabinoid agonist CP55,940 with mu opioid receptor and alpha2-adrenoceptor agonists in acute pain models in mice.
    Tham SM; Angus JA; Tudor EM; Wright CE
    Br J Pharmacol; 2005 Mar; 144(6):875-84. PubMed ID: 15778704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.