These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 7489367)
21. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease. Xie SS; Wang XB; Li JY; Yang L; Kong LY Eur J Med Chem; 2013 Jun; 64():540-53. PubMed ID: 23685572 [TBL] [Abstract][Full Text] [Related]
22. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eghtedari M; Sarrafi Y; Nadri H; Mahdavi M; Moradi A; Homayouni Moghadam F; Emami S; Firoozpour L; Asadipour A; Sabzevari O; Foroumadi A Eur J Med Chem; 2017 Mar; 128():237-246. PubMed ID: 28189905 [TBL] [Abstract][Full Text] [Related]
23. Molecular dissection of cholinesterase domains responsible for carbamate toxicity. Loewenstein Y; Denarie M; Zakut H; Soreq H Chem Biol Interact; 1993 Jun; 87(1-3):209-16. PubMed ID: 8343977 [TBL] [Abstract][Full Text] [Related]
24. New tacrine-acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer's disease. Chufarova N; Czarnecka K; Skibiński R; Cuchra M; Majsterek I; Szymański P Arch Pharm (Weinheim); 2018 Jul; 351(7):e1800050. PubMed ID: 29870588 [TBL] [Abstract][Full Text] [Related]
25. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity. Markowicz-Piasecka M; Sikora J; Mateusiak Ł; Mikiciuk-Olasik E; Huttunen KM Oxid Med Cell Longev; 2017; 2017():7303096. PubMed ID: 28770024 [TBL] [Abstract][Full Text] [Related]
26. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile. Strelnik AD; Petukhov AS; Zueva IV; Zobov VV; Petrov KA; Nikolsky EE; Balakin KV; Bachurin SO; Shtyrlin YG Bioorg Med Chem Lett; 2016 Aug; 26(16):4092-4. PubMed ID: 27377327 [TBL] [Abstract][Full Text] [Related]
27. Cholinesterases: new roles in brain function and in Alzheimer's disease. Giacobini E Neurochem Res; 2003 Apr; 28(3-4):515-22. PubMed ID: 12675140 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of tacrine-lophine hybrids via one-pot four component reaction and biological evaluation as acetyl- and butyrylcholinesterase inhibitors. da Costa JS; Lopes JP; Russowsky D; Petzhold CL; Borges AC; Ceschi MA; Konrath E; Batassini C; Lunardi PS; Gonçalves CA Eur J Med Chem; 2013 Apr; 62():556-63. PubMed ID: 23422935 [TBL] [Abstract][Full Text] [Related]
29. Design, synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives. Lopes JPB; Silva L; da Costa Franarin G; Antonio Ceschi M; Seibert Lüdtke D; Ferreira Dantas R; de Salles CMC; Paes Silva-Jr F; Roberto Senger M; Alvim Guedes I; Emmanuel Dardenne L Bioorg Med Chem; 2018 Nov; 26(20):5566-5577. PubMed ID: 30340901 [TBL] [Abstract][Full Text] [Related]
30. Butyrylcholinesterase genotype and enzyme activity in relation to Gulf War illness: preliminary evidence of gene-exposure interaction from a case-control study of 1991 Gulf War veterans. Steele L; Lockridge O; Gerkovich MM; Cook MR; Sastre A Environ Health; 2015 Jan; 14():4. PubMed ID: 25575675 [TBL] [Abstract][Full Text] [Related]
31. Normal and atypical butyrylcholinesterases in placental development, function, and malfunction. Sternfeld M; Rachmilewitz J; Loewenstein-Lichtenstein Y; Andres C; Timberg R; Ben-Ari S; Glick C; Soreq H; Zakut H Cell Mol Neurobiol; 1997 Jun; 17(3):315-32. PubMed ID: 9187488 [TBL] [Abstract][Full Text] [Related]
32. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Bitzinger DI; Gruber M; Tümmler S; Michels B; Bundscherer A; Hopf S; Trabold B; Graf BM; Zausig YA Neuropharmacology; 2016 Oct; 109():1-6. PubMed ID: 26772968 [TBL] [Abstract][Full Text] [Related]
33. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease. Zhu J; Yang H; Chen Y; Lin H; Li Q; Mo J; Bian Y; Pei Y; Sun H J Enzyme Inhib Med Chem; 2018 Dec; 33(1):496-506. PubMed ID: 29405075 [TBL] [Abstract][Full Text] [Related]
34. Successive organophosphate inhibition and oxime reactivation reveals distinct responses of recombinant human cholinesterase variants. Schwarz M; Loewenstein-Lichtenstein Y; Glick D; Liao J; Norgaard-Pedersen B; Soreq H Brain Res Mol Brain Res; 1995 Jul; 31(1-2):101-10. PubMed ID: 7476018 [TBL] [Abstract][Full Text] [Related]
35. In vitro effects of various cholinesterase inhibitors on acetyl- and butyrylcholinesterase of healthy volunteers. Thomsen T; Zendeh B; Fischer JP; Kewitz H Biochem Pharmacol; 1991 Jan; 41(1):139-41. PubMed ID: 1986738 [No Abstract] [Full Text] [Related]
36. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. Neville LF; Gnatt A; Loewenstein Y; Seidman S; Ehrlich G; Soreq H EMBO J; 1992 Apr; 11(4):1641-9. PubMed ID: 1373381 [TBL] [Abstract][Full Text] [Related]
37. Novel alkyl- and arylcarbamate derivatives with N-benzylpiperidine and N-benzylpiperazine moieties as cholinesterases inhibitors. Więckowska A; Bajda M; Guzior N; Malawska B Eur J Med Chem; 2010 Dec; 45(12):5602-11. PubMed ID: 20926161 [TBL] [Abstract][Full Text] [Related]
38. Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors. Campiani G; Fattorusso C; Butini S; Gaeta A; Agnusdei M; Gemma S; Persico M; Catalanotti B; Savini L; Nacci V; Novellino E; Holloway HW; Greig NH; Belinskaya T; Fedorko JM; Saxena A J Med Chem; 2005 Mar; 48(6):1919-29. PubMed ID: 15771436 [TBL] [Abstract][Full Text] [Related]
39. Effects of inescapable stress and treatment with pyridostigmine bromide on plasma butyrylcholinesterase and the acoustic startle response in rats. Servatius RJ; Ottenweller JE; Guo W; Beldowicz D; Zhu G; Natelson BH Physiol Behav; 2000 May; 69(3):239-46. PubMed ID: 10869589 [TBL] [Abstract][Full Text] [Related]
40. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons. Darvesh S; Arora RC; Martin E; Magee D; Hopkins DA; Armour JA Exp Neurol; 2004 Aug; 188(2):461-70. PubMed ID: 15246845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]