These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 7490260)
1. Catalytic role of an arginine residue in the highly conserved and unique sequence of phosphoenolpyruvate carboxylase. Yano M; Terada K; Umiji K; Izui K J Biochem; 1995 Jun; 117(6):1196-200. PubMed ID: 7490260 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of phosphoenolpyruvate carboxylase from E. coli: the role of His579 in the catalytic and regulatory functions. Terada K; Murata T; Izui K J Biochem; 1991 Jan; 109(1):49-54. PubMed ID: 2016273 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis of Flaveria trinervia phosphoenolpyruvate carboxylase: Arg450 and Arg767 are essential for catalytic activity and Lys829 affects substrate binding. Gao Y; Woo KC FEBS Lett; 1996 Sep; 392(3):285-8. PubMed ID: 8774863 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis of the conserved histidine residue of phosphoenolpyruvate carboxylase. His138 is essential for the second partial reaction. Terada K; Izui K Eur J Biochem; 1991 Dec; 202(3):797-803. PubMed ID: 1765093 [TBL] [Abstract][Full Text] [Related]
5. Effects of site-directed mutagenesis of conserved Lys606 residue on catalytic and regulatory functions of maize C4-form phosphoenolpyruvate carboxylase. Dong LY; Ueno Y; Hata S; Izui K Plant Cell Physiol; 1997 Dec; 38(12):1340-5. PubMed ID: 9522466 [TBL] [Abstract][Full Text] [Related]
6. Site-directed mutagenesis of Lys600 in phosphoenolpyruvate carboxylase of Flaveria trinervia: its roles in catalytic and regulatory functions. Gao Y; Woo KC FEBS Lett; 1995 Nov; 375(1-2):95-8. PubMed ID: 7498490 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional structure of phosphoenolpyruvate carboxylase: a proposed mechanism for allosteric inhibition. Kai Y; Matsumura H; Inoue T; Terada K; Nagara Y; Yoshinaga T; Kihara A; Tsumura K; Izui K Proc Natl Acad Sci U S A; 1999 Feb; 96(3):823-8. PubMed ID: 9927652 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Phosphoenolpyruvate Carboxylase from Oceanimonas smirnovii in Escherichia coli. Park S; Lee W; Kim H; Pack SP; Lee J Appl Biochem Biotechnol; 2015 Sep; 177(1):217-25. PubMed ID: 26142903 [TBL] [Abstract][Full Text] [Related]
9. Plausible phosphoenolpyruvate binding site revealed by 2.6 A structure of Mn2+-bound phosphoenolpyruvate carboxylase from Escherichia coli. Matsumura H; Terada M; Shirakata S; Inoue T; Yoshinaga T; Izui K; Kai Y FEBS Lett; 1999 Sep; 458(2):93-6. PubMed ID: 10481043 [TBL] [Abstract][Full Text] [Related]
10. Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Kai Y; Matsumura H; Izui K Arch Biochem Biophys; 2003 Jun; 414(2):170-9. PubMed ID: 12781768 [TBL] [Abstract][Full Text] [Related]
11. The importance of the strictly conserved, C-terminal glycine residue in phosphoenolpyruvate carboxylase for overall catalysis: mutagenesis and truncation of GLY-961 in the sorghum C4 leaf isoform. Xu W; Ahmed S; Moriyama H; Chollet R J Biol Chem; 2006 Jun; 281(25):17238-17245. PubMed ID: 16624802 [TBL] [Abstract][Full Text] [Related]
12. Phosphoenolpyruvate carboxylase: a new era of structural biology. Izui K; Matsumura H; Furumoto T; Kai Y Annu Rev Plant Biol; 2004; 55():69-84. PubMed ID: 15725057 [TBL] [Abstract][Full Text] [Related]
13. Maize C4-form phosphoenolpyruvate carboxylase engineered to be functional in C3 plants: mutations for diminished sensitivity to feedback inhibitors and for increased substrate affinity. Endo T; Mihara Y; Furumoto T; Matsumura H; Kai Y; Izui K J Exp Bot; 2008; 59(7):1811-8. PubMed ID: 18408221 [TBL] [Abstract][Full Text] [Related]
14. The conserved C-terminal tetrapeptide of sorghum C(4) phosphoenolpyruvate carboxylase is indispensable for maximal catalytic activity, but not for homotetramer formation. Dong L; Patil S; Condon SA; Haas EJ; Chollet R Arch Biochem Biophys; 1999 Nov; 371(1):124-8. PubMed ID: 10525297 [No Abstract] [Full Text] [Related]
15. A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase. Alvarez R; García-Mauriño S; Feria AB; Vidal J; Echevarría C Plant Physiol; 2003 Jun; 132(2):1097-106. PubMed ID: 12805637 [TBL] [Abstract][Full Text] [Related]
16. Regulatory phosphorylation of plant phosphoenolpyruvate carboxylase: role of a conserved basic residue upstream of the phosphorylation site. Ueno Y; Hata S; Izui K FEBS Lett; 1997 Nov; 417(1):57-60. PubMed ID: 9395074 [TBL] [Abstract][Full Text] [Related]
17. The replacement of Lys620 by serine desensitizes Escherichia coli phosphoenolpyruvate carboxylase to the effects of the feedback inhibitors L-aspartate and L-malate. Yano M; Izui K Eur J Biochem; 1997 Jul; 247(1):74-81. PubMed ID: 9249011 [TBL] [Abstract][Full Text] [Related]
18. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. DiMario RJ; Kophs AN; Apalla AJA; Schnable JN; Cousins AB Ann Bot; 2023 Nov; 132(3):413-428. PubMed ID: 37675505 [TBL] [Abstract][Full Text] [Related]
19. Structural and biochemical evidence of the glucose 6-phosphate-allosteric site of maize C4-phosphoenolpyruvate carboxylase: its importance in the overall enzyme kinetics. Muñoz-Clares RA; González-Segura L; Juárez-Díaz JA; Mújica-Jiménez C Biochem J; 2020 Jun; 477(11):2095-2114. PubMed ID: 32459324 [TBL] [Abstract][Full Text] [Related]
20. [Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering]. Wei S; Li Y Sheng Wu Gong Cheng Xue Bao; 2011 Dec; 27(12):1702-10. PubMed ID: 22506410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]