BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7491270)

  • 21. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein.
    Zeidel ML; Ambudkar SV; Smith BL; Agre P
    Biochemistry; 1992 Aug; 31(33):7436-40. PubMed ID: 1510932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence against a role of mouse, rat, and two cloned human t1alpha isoforms as a water channel or a regulator of aquaporin-type water channels.
    Ma T; Yang B; Matthay MA; Verkman AS
    Am J Respir Cell Mol Biol; 1998 Jul; 19(1):143-9. PubMed ID: 9651190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fascinating tail: cGMP activation of aquaporin-1 ion channels.
    Boassa D; Yool AJ
    Trends Pharmacol Sci; 2002 Dec; 23(12):558-62. PubMed ID: 12457773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of aquaporins in Xenopus laevis oocytes and glial cells as detected by diffusion-weighted 1H NMR spectroscopy and photometric swelling assay.
    Pfeuffer J; Bröer S; Bröer A; Lechte M; Flögel U; Leibfritz D
    Biochim Biophys Acta; 1998 Nov; 1448(1):27-36. PubMed ID: 9824661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4.
    Yang B; van Hoek AN; Verkman AS
    Biochemistry; 1997 Jun; 36(24):7625-32. PubMed ID: 9200715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of water and glycerol in aquaporin 3 is gated by H(+).
    Zeuthen T; Klaerke DA
    J Biol Chem; 1999 Jul; 274(31):21631-6. PubMed ID: 10419471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of aquaporin water permeability in the lens.
    Varadaraj K; Kumari S; Shiels A; Mathias RT
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1393-402. PubMed ID: 15790907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the water transporting properties of MIP and AQP1.
    Chandy G; Zampighi GA; Kreman M; Hall JE
    J Membr Biol; 1997 Sep; 159(1):29-39. PubMed ID: 9309208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region.
    Brooks HL; Regan JW; Yool AJ
    Mol Pharmacol; 2000 May; 57(5):1021-6. PubMed ID: 10779387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line.
    Yool AJ; Brokl OH; Pannabecker TL; Dantzler WH; Stamer WD
    BMC Physiol; 2002; 2():4. PubMed ID: 11914159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties.
    Dean RM; Rivers RL; Zeidel ML; Roberts DM
    Biochemistry; 1999 Jan; 38(1):347-53. PubMed ID: 9890916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein.
    Preston GM; Carroll TP; Guggino WB; Agre P
    Science; 1992 Apr; 256(5055):385-7. PubMed ID: 1373524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG.
    Musa-Aziz R; Chen LM; Pelletier MF; Boron WF
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5406-11. PubMed ID: 19273840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning and functional characterization of a novel aquaporin from Xenopus laevis oocytes.
    Virkki LV; Franke C; Somieski P; Boron WF
    J Biol Chem; 2002 Oct; 277(43):40610-6. PubMed ID: 12192003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver.
    Carbrey JM; Gorelick-Feldman DA; Kozono D; Praetorius J; Nielsen S; Agre P
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2945-50. PubMed ID: 12594337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes.
    Yang B; Verkman AS
    J Biol Chem; 2002 Sep; 277(39):36782-6. PubMed ID: 12133842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation.
    Boassa D; Yool AJ
    BMC Physiol; 2003 Oct; 3():12. PubMed ID: 14561230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel.
    Preston GM; Jung JS; Guggino WB; Agre P
    J Biol Chem; 1993 Jan; 268(1):17-20. PubMed ID: 7677994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability.
    Kuriyama H; Kawamoto S; Ishida N; Ohno I; Mita S; Matsuzawa Y; Matsubara K; Okubo K
    Biochem Biophys Res Commun; 1997 Dec; 241(1):53-8. PubMed ID: 9405233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation.
    Edashige K; Yamaji Y; Kleinhans FW; Kasai M
    Biol Reprod; 2003 Jan; 68(1):87-94. PubMed ID: 12493699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.