BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7491284)

  • 1. Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase.
    Bassani RA; Bassani JW; Bers DM
    Pflugers Arch; 1995 Aug; 430(4):573-8. PubMed ID: 7491284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes.
    Choi HS; Eisner DA
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):109-18. PubMed ID: 9925882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1994 Apr; 476(2):279-93. PubMed ID: 8046643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of inhibition of the sarcolemmal Ca-ATPase on systolic calcium fluxes and intracellular calcium concentration in rat ventricular myocytes.
    Choi HS; Eisner DA
    Pflugers Arch; 1999 May; 437(6):966-71. PubMed ID: 10370076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle.
    Bers DM; Bassani JW; Bassani RA
    Ann N Y Acad Sci; 1996 Apr; 779():430-42. PubMed ID: 8659859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes.
    Negretti N; O'Neill SC; Eisner DA
    Cardiovasc Res; 1993 Oct; 27(10):1826-30. PubMed ID: 8275530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes.
    McCall E; Ginsburg KS; Bassani RA; Shannon TR; Qi M; Samarel AM; Bers DM
    Am J Physiol; 1998 Apr; 274(4):H1348-60. PubMed ID: 9575940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Ca(2+) transporters to relaxation in intact ventricular myocytes from developing rats.
    Bassani RA; Bassani JW
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2406-13. PubMed ID: 12003852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition and redistribution among calcium transport systems in rabbit cardiac myocytes.
    Bers DM; Bassani JW; Bassani RA
    Cardiovasc Res; 1993 Oct; 27(10):1772-7. PubMed ID: 8275522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to estimate mitochondrial Ca2+ uptake in intact cardiac myocytes.
    Bassani JW; Bassani RA; Bers DM
    Braz J Med Biol Res; 1996 Dec; 29(12):1699-707. PubMed ID: 9222435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes.
    Balaguru D; Haddock PS; Puglisi JL; Bers DM; Coetzee WA; Artman M
    J Mol Cell Cardiol; 1997 Oct; 29(10):2747-57. PubMed ID: 9344769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1992; 453():591-608. PubMed ID: 1464847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of volatile anesthetics on sarcolemmal calcium transport and sarcoplasmic reticulum calcium content in isolated myocytes.
    Hannon JD; Cody MJ
    Anesthesiology; 2002 Jun; 96(6):1457-64. PubMed ID: 12170060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes.
    Chase A; Orchard CH
    J Mol Cell Cardiol; 2011 Jan; 50(1):187-93. PubMed ID: 20971118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and relative contributions of Ca transport systems in cardiac myocyte relaxation.
    Puglisi JL; Bassani RA; Bassani JW; Amin JN; Bers DM
    Am J Physiol; 1996 May; 270(5 Pt 2):H1772-8. PubMed ID: 8928885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects.
    Li L; Chu G; Kranias EG; Bers DM
    Am J Physiol; 1998 Apr; 274(4):H1335-47. PubMed ID: 9575939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced sarcolemmal Ca2+ efflux reduces sarcoplasmic reticulum Ca2+ content and systolic Ca2+ in cardiac hypertrophy.
    Díaz ME; Graham HK; Trafford AW
    Cardiovasc Res; 2004 Jun; 62(3):538-47. PubMed ID: 15158146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.
    Berlin JR; Bassani JW; Bers DM
    Biophys J; 1994 Oct; 67(4):1775-87. PubMed ID: 7819510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of maximum sarcoplasmic reticulum Ca load in intact ferret ventricular myocytes. Effects Of thapsigargin and isoproterenol.
    Ginsburg KS; Weber CR; Bers DM
    J Gen Physiol; 1998 Apr; 111(4):491-504. PubMed ID: 9524134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.