These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 7491489)
1. The interstellar carbon budget and the role of carbon in dust and large molecules. Snow TP; Witt AN Science; 1995 Dec; 270(5241):1455-60. PubMed ID: 7491489 [TBL] [Abstract][Full Text] [Related]
2. Following the Interstellar History of Carbon: From the Interiors of Stars to the Surfaces of Planets. Ziurys LM; Halfen DT; Geppert W; Aikawa Y Astrobiology; 2016 Dec; 16(12):997-1012. PubMed ID: 28001448 [TBL] [Abstract][Full Text] [Related]
3. Diamonds in dense molecular clouds: a challenge to the standard interstellar medium paradigm. Allamandola LJ; Sandford SA; Tielens AG; Herbst TM Science; 1993 Apr; 260():64-6. PubMed ID: 11538059 [TBL] [Abstract][Full Text] [Related]
4. Volatiles in interplanetary dust particles: a review. Gibson EK J Geophys Res; 1992 Mar; 97(E3):3865-75. PubMed ID: 11537855 [TBL] [Abstract][Full Text] [Related]
5. Substantial reservoirs of molecular hydrogen in the debris disks around young stars. Thi WF; Blake GA; van Dishoeck EF; van Zadelhoff GJ; Horn JM; Becklin EE; Mannings V; Sargent AI; van Den Ancker ME; Natta A Nature; 2001 Jan; 409(6816):60-3. PubMed ID: 11343110 [TBL] [Abstract][Full Text] [Related]
6. The abundance of heavy elements in interstellar gas. Cardelli JA Science; 1994 Jul; 265(5169):209-13. PubMed ID: 17750659 [TBL] [Abstract][Full Text] [Related]
8. Habitable zones exposed: astrosphere collapse frequency as a function of stellar mass. Smith DS; Scalo JM Astrobiology; 2009 Sep; 9(7):673-81. PubMed ID: 19778278 [TBL] [Abstract][Full Text] [Related]
9. IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST. Dwek E Astrophys J; 2016 Jul; 825(2):. PubMed ID: 32747835 [TBL] [Abstract][Full Text] [Related]
10. Isotopic anomalies in extraterrestrial grains. Ireland TR J R Soc West Aust; 1996 Mar; 79 Pt 1():43-50. PubMed ID: 11541324 [TBL] [Abstract][Full Text] [Related]
11. The albedo and scattering phase function of interstellar dust and the diffuse background at far-ultraviolet wavelengths. Hurwitz M; Bowyer S; Martin C Astrophys J; 1991 May; 372():167-84. PubMed ID: 11538211 [TBL] [Abstract][Full Text] [Related]
12. The Galileo probe mass spectrometer: composition of Jupiter's atmosphere. Niemann HB; Atreya SK; Carignan GR; Donahue TM; Haberman JA; Harpold DN; Hartle RE; Hunten DM; Kasprzak WT; Mahaffy PR; Owen TC; Spencer NW; Way SH Science; 1996 May; 272(5263):846-9. PubMed ID: 8629016 [TBL] [Abstract][Full Text] [Related]
14. The galactic cosmic ray ionization rate. Dalgarno A Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12269-73. PubMed ID: 16894166 [TBL] [Abstract][Full Text] [Related]
15. Type II supernovae as a significant source of interstellar dust. Dunne L; Eales S; Ivison R; Morgan H; Edmunds M Nature; 2003 Jul; 424(6946):285-7. PubMed ID: 12867973 [TBL] [Abstract][Full Text] [Related]
17. The formation of solar-neighbourhood stars in two generations separated by 5 billion years. Noguchi M Nature; 2018 Jul; 559(7715):585-588. PubMed ID: 30046069 [TBL] [Abstract][Full Text] [Related]
18. Identification of molecular-cloud material in interplanetary dust particles. Messenger S Nature; 2000 Apr; 404(6781):968-71. PubMed ID: 10801119 [TBL] [Abstract][Full Text] [Related]
19. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star. Umeda H; Nomoto K Nature; 2003 Apr; 422(6934):871-3. PubMed ID: 12712199 [TBL] [Abstract][Full Text] [Related]