BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 7491658)

  • 1. Activity of smooth muscle phosphatases 1 and 2A in rabbit basilar artery in vasospasm.
    Fukami M; Tani E; Takai A; Yamaura I; Minami N
    Stroke; 1995 Dec; 26(12):2321-7. PubMed ID: 7491658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm.
    Sato M; Tani E; Fujikawa H; Kaibuchi K
    Circ Res; 2000 Aug; 87(3):195-200. PubMed ID: 10926869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyfasudil, an active metabolite of fasudil hydrochloride, relaxes the rabbit basilar artery by disinhibition of myosin light chain phosphatase.
    Nakamura K; Nishimura J; Hirano K; Ibayashi S; Fujishima M; Kanaide H
    J Cereb Blood Flow Metab; 2001 Jul; 21(7):876-85. PubMed ID: 11435800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Rho-associated kinase during augmented contraction of the basilar artery to serotonin after subarachnoid hemorrhage.
    Watanabe Y; Faraci FM; Heistad DD
    Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2653-8. PubMed ID: 15665056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of protein kinases in canine basilar artery in vasospasm.
    Fujikawa H; Tani E; Yamaura I; Ozaki I; Miyaji K; Sato M; Takahashi K; Imajoh-Ohmi S
    J Cereb Blood Flow Metab; 1999 Jan; 19(1):44-52. PubMed ID: 9886354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim.
    Zuccarello M; Bonasso CL; Lewis AI; Sperelakis N; Rapoport RM
    Stroke; 1996 Feb; 27(2):311-6. PubMed ID: 8571429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin light chain phosphorylation and contractile proteins in a canine two-hemorrhage model of subarachnoid hemorrhage.
    Sun H; Kanamaru K; Ito M; Suzuki H; Kojima T; Waga S; Kureishi Y; Nakano T
    Stroke; 1998 Oct; 29(10):2149-54. PubMed ID: 9756597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calpain-calpastatin system of canine basilar artery in vasospasm.
    Yamaura I; Tani E; Saido TC; Suzuki K; Minami N; Maeda Y
    J Neurosurg; 1993 Oct; 79(4):537-43. PubMed ID: 8410223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous elevation of intracellular Ca2+ is essential for the development of cerebral vasospasm.
    Tani E; Matsumoto T
    Curr Vasc Pharmacol; 2004 Jan; 2(1):13-21. PubMed ID: 15320829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia.
    Teoh H; Zacour M; Wener AD; Gunaratnam L; Ward ME
    Am J Physiol Heart Circ Physiol; 2003 Apr; 284(4):H1182-9. PubMed ID: 12595284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of active smooth-muscle contraction in the occurrence of chronic vasospasm in the canine two-hemorrhage model.
    Matsui T; Kaizu H; Itoh S; Asano T
    J Neurosurg; 1994 Feb; 80(2):276-82. PubMed ID: 8283267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective improvement of the cerebral vasospasm after subarachnoid hemorrhage with low-dose nitroglycerin.
    Ito Y; Isotani E; Mizuno Y; Azuma H; Hirakawa K
    J Cardiovasc Pharmacol; 2000 Jan; 35(1):45-50. PubMed ID: 10630732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible role of protein kinase C-dependent smooth muscle contraction in the pathogenesis of chronic cerebral vasospasm.
    Matsui T; Takuwa Y; Johshita H; Yamashita K; Asano T
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):143-9. PubMed ID: 1983998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoblotting of contractile and cytoskeletal proteins of canine basilar artery in vasospasm.
    Minami N; Tani E; Maeda Y; Yamaura I; Nakano A
    Neurosurgery; 1993 Oct; 33(4):698-705; discussion 705-6. PubMed ID: 8232811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cerebral posthemorrhagic vasospasm. A sequential in vivo and in vitro study of the basilar artery of the rabbit].
    Vorkapic P
    Zentralbl Neurochir; 1990; 51(1):1-17. PubMed ID: 2275298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced contractile response of the basilar artery to platelet-derived growth factor in subarachnoid hemorrhage.
    Maeda Y; Hirano K; Hirano M; Kikkawa Y; Kameda K; Sasaki T; Kanaide H
    Stroke; 2009 Feb; 40(2):591-6. PubMed ID: 19095985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental cerebral vasospasm. Part 2. Contractility of spastic arterial wall.
    Nagasawa S; Handa H; Naruo Y; Watanabe H; Moritake K; Hayashi K
    Stroke; 1983; 14(4):579-84. PubMed ID: 6658935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of inhibitors of protein kinase C and calpain in experimental delayed cerebral vasospasm.
    Minami N; Tani E; Maeda Y; Yamaura I; Fukami M
    J Neurosurg; 1992 Jan; 76(1):111-8. PubMed ID: 1370069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin and thick filament regulation of contractility in experimental cerebral vasospasm.
    Kim I; Leinweber BD; Morgalla M; Butler WE; Seto M; Sasaki Y; Peterson JW; Morgan KG
    Neurosurgery; 2000 Feb; 46(2):440-6; discussion 446-7. PubMed ID: 10690734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of endothelin in experimental cerebral vasospasm.
    Roux S; Löffler BM; Gray GA; Sprecher U; Clozel M; Clozel JP
    Neurosurgery; 1995 Jul; 37(1):78-85; discussion 85-6. PubMed ID: 8587695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.