These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7492323)

  • 1. Effects of ionic strength on the catalysis and stability of prolyl oligopeptidase.
    Polgár L
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):267-71. PubMed ID: 7492323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleavage of the Lys196-Ser197 bond of prolyl oligopeptidase: enhanced catalytic activity for one of the two active enzyme forms.
    Polgár L; Patthy A
    Biochemistry; 1992 Nov; 31(44):10769-73. PubMed ID: 1420194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligopeptidase B: cloning and probing stability under nonequilibrium conditions.
    Polgár L; Felföldi F
    Proteins; 1998 Mar; 30(4):424-34. PubMed ID: 9533626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Truncated prolyl oligopeptidase from Pyrococcus furiosus.
    Juhász T; Szeltner Z; Polgár L
    Proteins; 2007 Nov; 69(3):633-43. PubMed ID: 17623862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent mechanism in the catalysis of prolyl endopeptidase from pig muscle.
    Polgar L
    Eur J Biochem; 1991 Apr; 197(2):441-7. PubMed ID: 2026166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational stability and catalytic activity of HIV-1 protease are both enhanced at high salt concentration.
    Szeltner Z; Polgár L
    J Biol Chem; 1996 Mar; 271(10):5458-63. PubMed ID: 8621402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of transient conformations in the folding pathway of barnase: reorganization of the folding intermediate at low pH.
    Oliveberg M; Fersht AR
    Biochemistry; 1996 Feb; 35(8):2738-49. PubMed ID: 8611580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unclosed beta-propellers display stable structures: implications for substrate access to the active site of prolyl oligopeptidase.
    Juhász T; Szeltner Z; Fülöp V; Polgár L
    J Mol Biol; 2005 Feb; 346(3):907-17. PubMed ID: 15713471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual secondary specificity of prolyl oligopeptidase and the different reactivities of its two forms toward charged substrates.
    Polgár L
    Biochemistry; 1992 Aug; 31(33):7729-35. PubMed ID: 1510958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of denaturation of alpha-chymotrypsinogen A in aqueous urea and alkylurea solutions.
    Poklar N; Vesnaver G; Lapanje S
    J Protein Chem; 1995 Nov; 14(8):709-19. PubMed ID: 8747432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and mechanistic studies of prolyl oligopeptidase from the hyperthermophile Pyrococcus furiosus.
    Harris MN; Madura JD; Ming LJ; Harwood VJ
    J Biol Chem; 2001 Jun; 276(22):19310-7. PubMed ID: 11278687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.
    Hung HC; Chang GG
    Biophys J; 2001 Dec; 81(6):3456-71. PubMed ID: 11721007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states.
    Nallamsetty S; Dubey VK; Pande M; Ambasht PK; Jagannadham MV
    Biochimie; 2007 Nov; 89(11):1416-24. PubMed ID: 17658212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and kinetic stability of penicillin acylase from Escherichia coli.
    Grinberg VY; Burova TV; Grinberg NV; Shcherbakova TA; Guranda DT; Chilov GG; Svedas VK
    Biochim Biophys Acta; 2008 May; 1784(5):736-46. PubMed ID: 18314015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH dependence of the folding of intestinal fatty acid binding protein.
    Dalessio PM; Ropson IJ
    Arch Biochem Biophys; 1998 Nov; 359(2):199-208. PubMed ID: 9808761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low barrier hydrogen bond is absent in the catalytic triads in the ground state but Is present in a transition-state complex in the prolyl oligopeptidase family of serine proteases.
    Kahyaoglu A; Haghjoo K; Guo F; Jordan F; Kettner C; Felföldi F; Polgár L
    J Biol Chem; 1997 Oct; 272(41):25547-54. PubMed ID: 9325271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The noncatalytic beta-propeller domain of prolyl oligopeptidase enhances the catalytic capability of the peptidase domain.
    Szeltner Z; Renner V; Polgár L
    J Biol Chem; 2000 May; 275(20):15000-5. PubMed ID: 10747969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding and stability of endoglucanase III, a single-domain cellulase from Trichoderma reesei.
    Arunachalam U; Kellis JT
    Biochemistry; 1996 Sep; 35(35):11379-85. PubMed ID: 8784193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prolyl oligopeptidase family.
    Polgár L
    Cell Mol Life Sci; 2002 Feb; 59(2):349-62. PubMed ID: 11915948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions.
    Kuhlman B; Luisi DL; Young P; Raleigh DP
    Biochemistry; 1999 Apr; 38(15):4896-903. PubMed ID: 10200179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.