BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 7492539)

  • 1. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-dependent sugar transport complexity in human erythrocytes.
    Leitch JM; Carruthers A
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C974-86. PubMed ID: 16928769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-O-methyl-D-glucose transport in rat red cells: effects of heavy water.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):37-48. PubMed ID: 1851040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-dependent substrate occlusion by the human erythrocyte sugar transporter.
    Heard KS; Fidyk N; Carruthers A
    Biochemistry; 2000 Mar; 39(11):3005-14. PubMed ID: 10715121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two independent modes of action of ATP on human erythrocyte sugar transport.
    Helgerson AL; Hebert DN; Naderi S; Carruthers A
    Biochemistry; 1989 Jul; 28(15):6410-7. PubMed ID: 2506926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport.
    Heard KS; Diguette M; Heard AC; Carruthers A
    Exp Physiol; 1998 Mar; 83(2):195-202. PubMed ID: 9568479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated net efflux of 3-O-methylglucose from rat adipocytes: a reevaluation.
    Wheeler TJ
    Biochim Biophys Acta; 1994 Mar; 1190(2):345-54. PubMed ID: 8142435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative nucleotide binding to the human erythrocyte sugar transporter.
    Cloherty EK; Levine KB; Graybill C; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12639-51. PubMed ID: 12379106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S; Cloherty EK; Carruthers A
    Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity.
    Whitesell RR; Regen DM; Beth AH; Pelletier DK; Abumrad NA
    Biochemistry; 1989 Jun; 28(13):5618-25. PubMed ID: 2775725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.