BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7492562)

  • 1. Kinetics of inorganic phosphate release during the interaction of p21ras with the GTPase-activating proteins, p120-GAP and neurofibromin.
    Nixon AE; Brune M; Lowe PN; Webb MR
    Biochemistry; 1995 Nov; 34(47):15592-8. PubMed ID: 7492562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of GTPase-activating protein with p21ras, measured using a continuous assay for inorganic phosphate release.
    Webb MR; Hunter JL
    Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):555-9. PubMed ID: 1445214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of interaction between normal and proline 12 Ras and the GTPase-activating proteins, p120-GAP and neurofibromin. The significance of the intrinsic GTPase rate in determining the transforming ability of ras.
    Eccleston JF; Moore KJ; Morgan L; Skinner RH; Lowe PN
    J Biol Chem; 1993 Dec; 268(36):27012-9. PubMed ID: 8262937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of GTPase activating proteins (GAPs) with p21ras measured by a novel fluorescence anisotropy method. Essential role of Arg-903 of GAP in activation of GTP hydrolysis on p21ras.
    Brownbridge GG; Lowe PN; Moore KJ; Skinner RH; Webb MR
    J Biol Chem; 1993 May; 268(15):10914-9. PubMed ID: 8496156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of GTP hydrolysis by p21N-ras catalyzed by GAP: studies with a fluorescent GTP analogue.
    Moore KJ; Webb MR; Eccleston JF
    Biochemistry; 1993 Jul; 32(29):7451-9. PubMed ID: 8338843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of Ras GTPase activation by neurofibromin.
    Phillips RA; Hunter JL; Eccleston JF; Webb MR
    Biochemistry; 2003 Apr; 42(13):3956-65. PubMed ID: 12667087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural differences in the minimal catalytic domains of the GTPase-activating proteins p120GAP and neurofibromin.
    Ahmadian MR; Wiesmüller L; Lautwein A; Bischoff FR; Wittinghofer A
    J Biol Chem; 1996 Jul; 271(27):16409-15. PubMed ID: 8663212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and regulation of the catalytic domain of Ira2p, a Saccharomyces cerevisiae GTPase-activating protein of Ras2p.
    Parrini MC; Jacquet E; Bernardi A; Jacquet M; Parmeggiani A
    Biochemistry; 1995 Oct; 34(42):13776-83. PubMed ID: 7577970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescently labelled guanine nucleotide binding proteins to analyse elementary steps of GAP-catalysed reactions.
    Kraemer A; Brinkmann T; Plettner I; Goody R; Wittinghofer A
    J Mol Biol; 2002 Dec; 324(4):763-74. PubMed ID: 12460576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP.
    Geyer M; Schweins T; Herrmann C; Prisner T; Wittinghofer A; Kalbitzer HR
    Biochemistry; 1996 Aug; 35(32):10308-20. PubMed ID: 8756686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane-targeted ras GTPase-activating protein is a potent suppressor of p21ras function.
    Huang DC; Marshall CJ; Hancock JF
    Mol Cell Biol; 1993 Apr; 13(4):2420-31. PubMed ID: 8455619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of two conserved arginine residues for catalysis by the ras GTPase-activating protein, neurofibromin.
    Sermon BA; Lowe PN; Strom M; Eccleston JF
    J Biol Chem; 1998 Apr; 273(16):9480-5. PubMed ID: 9545275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase.
    Brune M; Hunter JL; Corrie JE; Webb MR
    Biochemistry; 1994 Jul; 33(27):8262-71. PubMed ID: 8031761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of the H-ras p21 GTPase activating protein by the activated epidermal growth factor receptor leads to inhibition of the p21 GTPase activity in vitro.
    Serth J; Weber W; Frech M; Wittinghofer A; Pingoud A
    Biochemistry; 1992 Jul; 31(28):6361-5. PubMed ID: 1633149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Ras-GAP and the neurofibromatosis-1 gene product by eicosanoids.
    Han JW; McCormick F; Macara IG
    Science; 1991 Apr; 252(5005):576-9. PubMed ID: 1902323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence approaches to the study of the p21ras GTPase mechanism.
    Eccleston JF; Moore KJ; Brownbridge GG; Webb MR; Lowe PN
    Biochem Soc Trans; 1991 Apr; 19(2):432-7. PubMed ID: 1889625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosslinking of the surface immunoglobulin receptor in B lymphocytes induces a redistribution of neurofibromin but not p120-GAP.
    Boyer MJ; Gutmann DH; Collins FS; Bar-Sagi D
    Oncogene; 1994 Feb; 9(2):349-57. PubMed ID: 8290249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy.
    Ahmadian MR; Hoffmann U; Goody RS; Wittinghofer A
    Biochemistry; 1997 Apr; 36(15):4535-41. PubMed ID: 9109662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetic mechanism of the GAP-activated GTPase of p21 ras.
    Moore KJ; Lowe PN; Eccleston JF
    Philos Trans R Soc Lond B Biol Sci; 1992 Apr; 336(1276):49-53; discussion 53-4. PubMed ID: 1351296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of neurofibromin and p120 GTPase-activating protein by nutritionally relevant fatty acids.
    Golubić M; Harwalkar JA; Bryant SS; Sundaram V; Jove R; Lee JH
    Nutr Cancer; 1998; 30(2):97-107. PubMed ID: 9589427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.