BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7492606)

  • 1. Effects of mixed solvents on three elementary steps in the reactions of horseradish peroxidase and lactoperoxidase.
    Sato K; Hasumi H; Tsukidate A; Sakurada J; Nakamura S; Hosoya T
    Biochim Biophys Acta; 1995 Nov; 1253(1):94-102. PubMed ID: 7492606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of phenols by horseradish peroxidase and lactoperoxidase compound II--kinetic considerations.
    Zahida MS; Deva W; Peerzada GM; Behere DV
    Indian J Biochem Biophys; 1998 Dec; 35(6):353-7. PubMed ID: 10412229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of aromatic donor molecules with lactoperoxidase probed by optical difference spectra.
    Hosoya T; Sakurada J; Kurokawa C; Toyoda R; Nakamura S
    Biochemistry; 1989 Mar; 28(6):2639-44. PubMed ID: 2730881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically mediated reduction of horseradish peroxidase by 1,1'-ferrocenedimethanol in organic solvents.
    Konash A; Magner E
    Anal Chem; 2005 Mar; 77(6):1647-54. PubMed ID: 15762568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies on the oxidation of nitrite by horseradish peroxidase and lactoperoxidase.
    Gebicka L
    Acta Biochim Pol; 1999; 46(4):919-27. PubMed ID: 10824860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of the peroxidase-catalyzed iodination of tyrosine.
    Sun W; Dunford HB
    Biochemistry; 1993 Feb; 32(5):1324-31. PubMed ID: 8448141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of aromatic donor molecules to lactoperoxidase: proton NMR and optical difference spectroscopic studies.
    Modi S; Behere DV; Mitra S
    Biochim Biophys Acta; 1989 Jul; 996(3):214-25. PubMed ID: 2546604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives.
    Jantschko W; Furtmüller PG; Allegra M; Livrea MA; Jakopitsch C; Regelsberger G; Obinger C
    Arch Biochem Biophys; 2002 Feb; 398(1):12-22. PubMed ID: 11811944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study.
    Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2005 Feb; 434(1):51-9. PubMed ID: 15629108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low catalytic turnover of horseradish peroxidase in thiocyanate oxidation. Evidence for concurrent inactivation by cyanide generated through one-electron oxidation of thiocyanate.
    Adak S; Mazumdar A; Banerjee RK
    J Biol Chem; 1997 Apr; 272(17):11049-56. PubMed ID: 9110998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Trolox C oxidation by lactoperoxidase compound II.
    Sun W; Dunford HB
    Biochem Biophys Res Commun; 1993 Jul; 194(1):306-11. PubMed ID: 8333845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EDTA inhibits lactoperoxidase-catalyzed iodide oxidation by acting as an electron-donor and interacting near the iodide binding site.
    Bhattacharyya DK; Bandyopadhyay U; Banerjee RK
    Mol Cell Biochem; 1996 Sep; 162(2):105-11. PubMed ID: 8905632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of HRP-catalyzed nitrite oxidation by H
    Samuni A; Maimon E; Goldstein S
    Free Radic Biol Med; 2017 Jul; 108():832-839. PubMed ID: 28495446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One- and two-electron oxidations of luminol by peroxidase systems.
    Nakamura M; Nakamura S
    Free Radic Biol Med; 1998 Mar; 24(4):537-44. PubMed ID: 9559865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxidase- and nitrite-dependent metabolism of the anthracycline anticancer agents daunorubicin and doxorubicin.
    Reszka KJ; McCormick ML; Britigan BE
    Biochemistry; 2001 Dec; 40(50):15349-61. PubMed ID: 11735418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic properties of horseradish peroxidase reconstituted with the 8-(hydroxymethyl)- and 8-formylheme derivatives.
    Harris RZ; Liddell PA; Smith KM; Ortiz de Montellano PR
    Biochemistry; 1993 Apr; 32(14):3658-63. PubMed ID: 8385486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a radical mechanism in peroxidase-catalyzed coupling. II. Single turnover experiments with horseradish peroxidase.
    Doerge DR; Taurog A; Dorris ML
    Arch Biochem Biophys; 1994 Nov; 315(1):90-9. PubMed ID: 7979411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of p-cresol by horseradish peroxidase compound I.
    Hewson WD; Dunford HB
    J Biol Chem; 1976 Oct; 251(19):6036-42. PubMed ID: 9411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Coprinus cinereus peroxidase by 4-chloroaniline during turnover: comparison with horseradish peroxidase and bovine lactoperoxidase.
    Chang HC; Holland RD; Bumpus JA; Churchwell MI; Doerge DR
    Chem Biol Interact; 1999 Dec; 123(3):197-217. PubMed ID: 10654839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct heme-substrate interactions of lactoperoxidase probed by resonance Raman spectroscopy: difference between animal and plant peroxidases.
    Kitagawa T; Hashimoto S; Teraoka J; Nakamura S; Yajima H; Hosoya T
    Biochemistry; 1983 Jun; 22(12):2788-92. PubMed ID: 6871162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.