These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7492807)

  • 21. [The use of a thermomechanical cleaning procedure for removal of residual particles of corund blasted or glass bead peened implants in total hip arthoplasty].
    Schuh A; Uter W; Holzwarth U; Kachler W; Göske J; Müller T
    Zentralbl Chir; 2005 Aug; 130(4):346-52. PubMed ID: 16103960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth.
    Janeček M; Nový F; Stráský J; Harcuba P; Wagner L
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):417-22. PubMed ID: 21316629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Katsuda SI
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of femoral stem surface finish on the apparent static shear strength at the stem-cement interface.
    Zhang H; Brown LT; Blunt LA; Barrans SM
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):96-104. PubMed ID: 19627775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of heat treatment on the fatigue strength of microknurled Ti-6Al-4V.
    Bourassa PL; Yue S; Bobyn JD
    J Biomed Mater Res; 1997 Nov; 37(2):291-300. PubMed ID: 9358324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of WC-17Co Coating Combined with Shot Peening Treatment on Fatigue Behaviors of TC21 Titanium Alloy.
    Du D; Liu D; Zhang X; Tang J; Meng B
    Materials (Basel); 2016 Oct; 9(11):. PubMed ID: 28773984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method.
    Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H
    Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue Limit of Custom 465 with Surface Strengthening Treatment.
    An G; Liu RJ; Yin GQ
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components.
    Coathup MJ; Blackburn J; Goodship AE; Cunningham JL; Smith T; Blunn GW
    Biomaterials; 2005 Jul; 26(19):4161-9. PubMed ID: 15664643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography.
    Hacking SA; Zuraw M; Harvey EJ; Tanzer M; Krygier JJ; Bobyn JD
    J Biomed Mater Res A; 2007 Jul; 82(1):179-87. PubMed ID: 17269149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteoblastic cell behaviour on different titanium implant surfaces.
    Le Guehennec L; Lopez-Heredia MA; Enkel B; Weiss P; Amouriq Y; Layrolle P
    Acta Biomater; 2008 May; 4(3):535-43. PubMed ID: 18226985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher.
    Wang CC; Hsu YC; Su FC; Lu SC; Lee TM
    J Biomed Mater Res A; 2009 Feb; 88(2):370-83. PubMed ID: 18306287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the secondary shot in the double shot peening process on the residual compressive stress distribution of Ti-6Al-4V.
    Ongtrakulkij G; Khantachawana A; Kajornchaiyakul J; Kondoh K
    Heliyon; 2022 Jan; 8(1):e08758. PubMed ID: 35071817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants.
    Aparicio C; Manero JM; Conde F; Pegueroles M; Planell JA; Vallet-Regí M; Gil FJ
    J Biomed Mater Res A; 2007 Sep; 82(3):521-9. PubMed ID: 17295245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy.
    Su CH; Chen TC; Ding YS; Lu GX; Tsay LW
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of bending on shot peened and polished osteosynthesis plates].
    Starker M; Fröhling M; Hirsch T
    Biomed Tech (Berl); 1991 Mar; 36(3):56-9. PubMed ID: 2054460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications.
    Elias KL; Daehn GS; Brantley WA; McGlumphy EA
    J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residual Stresses in Surgical Growing Rods.
    Croonenborghs M; Ismail K; Mousny M; Delannay L; Everaerts J; Korsunsky AM; Jacques PJ; Pardoen T
    J Biomech Eng; 2024 Jan; 146(1):. PubMed ID: 37831119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.