These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7493207)

  • 1. What insights into age-related changes in skeletal muscle are provided by animal models?
    Cartee GD
    J Gerontol A Biol Sci Med Sci; 1995 Nov; 50 Spec No():137-41. PubMed ID: 7493207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regrowth of skeletal muscle atrophied from inactivity.
    Machida S; Booth FW
    Med Sci Sports Exerc; 2004 Jan; 36(1):52-9. PubMed ID: 14707768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse.
    Caron AZ; Drouin G; Desrosiers J; Trensz F; Grenier G
    J Appl Physiol (1985); 2009 Jun; 106(6):2049-59. PubMed ID: 19342435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle IGF-binding protein-3 and -5 expressions are age, muscle, and load dependent.
    Spangenburg EE; Abraha T; Childs TE; Pattison JS; Booth FW
    Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E340-50. PubMed ID: 12397024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension.
    Eash J; Olsen A; Breur G; Gerrard D; Hannon K
    BMC Musculoskelet Disord; 2007 Apr; 8():32. PubMed ID: 17425786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.
    Baehr LM; West DW; Marcotte G; Marshall AG; De Sousa LG; Baar K; Bodine SC
    Aging (Albany NY); 2016 Jan; 8(1):127-46. PubMed ID: 26826670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytokines in aging and muscle homeostasis.
    Cannon JG
    J Gerontol A Biol Sci Med Sci; 1995 Nov; 50 Spec No():120-3. PubMed ID: 7493204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of age-related decreases in muscle mass and strength to skeletal status.
    Marcus R
    J Gerontol A Biol Sci Med Sci; 1995 Nov; 50 Spec No():86-7. PubMed ID: 7493225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism.
    Faulkner JA; Brooks SV; Zerba E
    J Gerontol A Biol Sci Med Sci; 1995 Nov; 50 Spec No():124-9. PubMed ID: 7493205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and molecular aspects of immobilization-induced muscle atrophy in rats at different stages of postnatal development: the role of autophagy.
    Foresto CS; Paula-Gomes S; Silveira WA; Graça FA; Kettelhut Ido C; Gonçalves DA; Mattiello-Sverzut AC
    J Appl Physiol (1985); 2016 Sep; 121(3):646-60. PubMed ID: 27445301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between hind-limb muscle atrophy and serum enzymes in tail suspended rats.
    Nakaya M; Kosugi K; Takeuchi S
    Physiologist; 1993 Feb; 36(1 Suppl):S149-50. PubMed ID: 11538515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing the repair and adaptation of muscles in aged individuals: satellite cells and innervation.
    Carlson BM
    J Gerontol A Biol Sci Med Sci; 1995 Nov; 50 Spec No():96-100. PubMed ID: 7493227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histochemical study on the changes in muscle fibers in relation to the effects of aging on recovery from muscular atrophy caused by disuse in rats.
    Tanaka T; Kariya Y; Hoshino Y
    J Orthop Sci; 2004; 9(1):76-85. PubMed ID: 14767708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass.
    Jones SW; Hill RJ; Krasney PA; O'Conner B; Peirce N; Greenhaff PL
    FASEB J; 2004 Jun; 18(9):1025-7. PubMed ID: 15084522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unloading of juvenile muscle results in a reduced muscle size 9 wk after reloading.
    Mozdziak PE; Pulvermacher PM; Schultz E
    J Appl Physiol (1985); 2000 Jan; 88(1):158-64. PubMed ID: 10642376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization effects in young and older adults.
    Urso ML; Clarkson PM; Price TB
    Eur J Appl Physiol; 2006 Mar; 96(5):564-71. PubMed ID: 16369818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking age-related changes in skeletal muscle mass and composition with metabolism and disease.
    Janssen I; Ross R
    J Nutr Health Aging; 2005; 9(6):408-19. PubMed ID: 16395513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Age-related muscle mass loss].
    Czarkowska-Paczek B; Milczarczyk S
    Przegl Lek; 2006; 63(8):658-61. PubMed ID: 17441378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of muscle size during disuse, disease, and aging.
    Degens H; Alway SE
    Int J Sports Med; 2006 Feb; 27(2):94-9. PubMed ID: 16475053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of muscle atrophy: wasting away from the outside in: an introduction.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1856-9. PubMed ID: 19727029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.