These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 7493313)

  • 21. Schizosaccharomyces pombe RNase MRP RNA is homologous to metazoan RNase MRP RNAs and may provide clues to interrelationships between RNase MRP and RNase P.
    Paluh JL; Clayton DA
    Yeast; 1995 Oct; 11(13):1249-64. PubMed ID: 8553696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The chemical repertoire of natural ribozymes.
    Doudna JA; Cech TR
    Nature; 2002 Jul; 418(6894):222-8. PubMed ID: 12110898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The protein cofactor allows the sequence of an RNase P ribozyme to diversify by maintaining the catalytically active structure of the enzyme.
    Kim JJ; Kilani AF; Zhan X; Altman S; Liu F
    RNA; 1997 Jun; 3(6):613-23. PubMed ID: 9174096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel protein shared by RNase MRP and RNase P.
    Chu S; Zengel JM; Lindahl L
    RNA; 1997 Apr; 3(4):382-91. PubMed ID: 9085845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of loss-of-function mutations in Escherichia coli ribonuclease P RNA (M1 RNA) by a specific base-pair disruption.
    Morse DP; Schmidt FJ
    J Mol Biol; 1993 Mar; 230(1):11-4. PubMed ID: 7680723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of human mitochondrial RNase P: novel aspects in tRNA processing.
    Rossmanith W; Karwan RM
    Biochem Biophys Res Commun; 1998 Jun; 247(2):234-41. PubMed ID: 9642109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe.
    Biswas R; Ledman DW; Fox RO; Altman S; Gopalan V
    J Mol Biol; 2000 Feb; 296(1):19-31. PubMed ID: 10656815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction between Escherichia coli RNase P RNA and the discriminator base results in slow product release.
    Tallsjö A; Kufel J; Kirsebom LA
    RNA; 1996 Apr; 2(4):299-307. PubMed ID: 8634910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the universally conserved core of ribonuclease P RNA.
    Chen JL; Pace NR
    RNA; 1997 Jun; 3(6):557-60. PubMed ID: 9174091
    [No Abstract]   [Full Text] [Related]  

  • 30. Ribonuclease-P RNA gene of the plastid chromosome from Cyanophora paradoxa.
    Shevelev EL; Bryant DA; Löffelhardt W; Bohnert HJ
    DNA Res; 1995 Oct; 2(5):231-4. PubMed ID: 8770566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence of the ribonuclease P RNA gene from the cyanobacterium Anacystis nidulans.
    Banta AB; Haas ES; Brown JW; Pace NR
    Nucleic Acids Res; 1992 Feb; 20(4):911. PubMed ID: 1371871
    [No Abstract]   [Full Text] [Related]  

  • 32. An insertion/deletion polymorphism in the fourth intron of POP5 is used for linkage mapping in sheep.
    Diez-Tascón C; Dodds KG; Crawford AM
    Anim Genet; 2002 Jun; 33(3):229-30. PubMed ID: 12030930
    [No Abstract]   [Full Text] [Related]  

  • 33. Catalysis by RNA.
    Waugh DS; Pace NR
    Bioessays; 1986 Feb; 4(2):56-61. PubMed ID: 2431683
    [No Abstract]   [Full Text] [Related]  

  • 34. Manipulating gene expression by ribozyme technology.
    Perriman RJ; Gerlach WL
    Curr Opin Biotechnol; 1990 Oct; 1(1):86-91. PubMed ID: 1367922
    [No Abstract]   [Full Text] [Related]  

  • 35. Retrohoming: cDNA-mediated mobility of group II introns requires a catalytic RNA.
    Curcio MJ; Belfort M
    Cell; 1996 Jan; 84(1):9-12. PubMed ID: 8548830
    [No Abstract]   [Full Text] [Related]  

  • 36. Dissecting the energetic architecture within an RNA tertiary structural motif via high-throughput thermodynamic measurements.
    Shin JH; Bonilla SL; Denny SK; Greenleaf WJ; Herschlag D
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2220485120. PubMed ID: 36897989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro selected GUAA tetraloop-binding receptors with structural plasticity and evolvability towards natural RNA structural modules.
    Zakrevsky P; Calkins E; Kao YL; Singh G; Keleshian VL; Baudrey S; Jaeger L
    Nucleic Acids Res; 2021 Feb; 49(4):2289-2305. PubMed ID: 33524109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Duplex Stem Replacement with bPNA+ Triplex Hybrid Stems Enables Reporting on Tertiary Interactions of Internal RNA Domains.
    Miao S; Liang Y; Marathe I; Mao J; DeSantis C; Bong D
    J Am Chem Soc; 2019 Jun; 141(23):9365-9372. PubMed ID: 31094510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry.
    Vander Meulen KA; Butcher SE
    Nucleic Acids Res; 2012 Mar; 40(5):2140-51. PubMed ID: 22058128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering.
    Wang YX; Zuo X; Wang J; Yu P; Butcher SE
    Methods; 2010 Oct; 52(2):180-91. PubMed ID: 20554045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.