These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 7493318)

  • 21. Pre-spliceosome formation in S.pombe requires a stable complex of SF1-U2AF(59)-U2AF(23).
    Huang T; Vilardell J; Query CC
    EMBO J; 2002 Oct; 21(20):5516-26. PubMed ID: 12374752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly.
    Shen H; Green MR
    Mol Cell; 2004 Nov; 16(3):363-73. PubMed ID: 15525510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Spliceosome: A Protein-Directed Metalloribozyme.
    Shi Y
    J Mol Biol; 2017 Aug; 429(17):2640-2653. PubMed ID: 28733144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The polypyrimidine tract binding protein (PTB) represses splicing of exon 6B from the beta-tropomyosin pre-mRNA by directly interfering with the binding of the U2AF65 subunit.
    Saulière J; Sureau A; Expert-Bezançon A; Marie J
    Mol Cell Biol; 2006 Dec; 26(23):8755-69. PubMed ID: 16982681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of a novel spliceosomal complex on pre-mRNAs containing branch site mutations.
    Champion-Arnaud P; Gozani O; Palandjian L; Reed R
    Mol Cell Biol; 1995 Oct; 15(10):5750-6. PubMed ID: 7565727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative modes of binding by U2AF65 at the polypyrimidine tract.
    Henscheid KL; Voelker RB; Berglund JA
    Biochemistry; 2008 Jan; 47(1):449-59. PubMed ID: 18067274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo.
    Chen C; Zhao X; Kierzek R; Yu YT
    Mol Cell Biol; 2010 Sep; 30(17):4108-19. PubMed ID: 20606010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial organization of protein-RNA interactions in the branch site-3' splice site region during pre-mRNA splicing in yeast.
    McPheeters DS; Muhlenkamp P
    Mol Cell Biol; 2003 Jun; 23(12):4174-86. PubMed ID: 12773561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a human protein that recognizes the 3' splice site during the second step of pre-mRNA splicing.
    Wu S; Green MR
    EMBO J; 1997 Jul; 16(14):4421-32. PubMed ID: 9250686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bimolecular exon ligation by the human spliceosome.
    Anderson K; Moore MJ
    Science; 1997 Jun; 276(5319):1712-6. PubMed ID: 9180084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis for recognition of the intron branch site RNA by splicing factor 1.
    Liu Z; Luyten I; Bottomley MJ; Messias AC; Houngninou-Molango S; Sprangers R; Zanier K; Krämer A; Sattler M
    Science; 2001 Nov; 294(5544):1098-102. PubMed ID: 11691992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic association of proteins with the pre-mRNA branch region.
    MacMillan AM; Query CC; Allerson CR; Chen S; Verdine GL; Sharp PA
    Genes Dev; 1994 Dec; 8(24):3008-20. PubMed ID: 8001820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF.
    Sridharan V; Heimiller J; Singh R
    Mol Cell Biol; 2011 Feb; 31(4):652-61. PubMed ID: 21149581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular genetic analysis of the heterodimeric splicing factor U2AF: the RS domain on either the large or small Drosophila subunit is dispensable in vivo.
    Rudner DZ; Breger KS; Rio DC
    Genes Dev; 1998 Apr; 12(7):1010-21. PubMed ID: 9531538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing.
    Hirose T; Ideue T; Nagai M; Hagiwara M; Shu MD; Steitz JA
    Mol Cell; 2006 Sep; 23(5):673-84. PubMed ID: 16949364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple factors in the early splicing complex are involved in the nuclear retention of pre-mRNAs in mammalian cells.
    Takemura R; Takeiwa T; Taniguchi I; McCloskey A; Ohno M
    Genes Cells; 2011 Oct; 16(10):1035-49. PubMed ID: 21929696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A protein related to splicing factor U2AF35 that interacts with U2AF65 and SR proteins in splicing of pre-mRNA.
    Tronchère H; Wang J; Fu XD
    Nature; 1997 Jul; 388(6640):397-400. PubMed ID: 9237760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events.
    Qin D; Huang L; Wlodaver A; Andrade J; Staley JP
    RNA; 2016 Feb; 22(2):237-53. PubMed ID: 26647463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The evolutionary conservation of the splicing apparatus between fission yeast and man.
    Wentz-Hunter K; Potashkin J
    Nucleic Acids Symp Ser; 1995; (33):226-8. PubMed ID: 8643378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo.
    Lin KT; Lu RM; Tarn WY
    Mol Cell Biol; 2004 Oct; 24(20):9176-85. PubMed ID: 15456888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.