BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7493935)

  • 1. Identification of an active site arginine in rat choline acetyltransferase by alanine scanning mutagenesis.
    Wu D; Hersh LB
    J Biol Chem; 1995 Dec; 270(49):29111-6. PubMed ID: 7493935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for presence of an arginine residue in the coenzyme A binding site of choline acetyltransferase.
    Mautner HG; Pakula AA; Merrill RE
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7449-52. PubMed ID: 6950387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional aspects of rat microsomal glutathione transferase. The roles of cysteine 49, arginine 107, lysine 67, histidine, and tyrosine residues.
    Weinander R; Ekström L; Andersson C; Raza H; Bergman T; Morgenstern R
    J Biol Chem; 1997 Apr; 272(14):8871-7. PubMed ID: 9083005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADP-glucose pyrophosphorylase by phosphate.
    Sheng J; Preiss J
    Biochemistry; 1997 Oct; 36(42):13077-84. PubMed ID: 9335570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of conserved histidines in choline acetyltransferase by site-directed mutagenesis.
    Carbini LA; Hersh LB
    J Neurochem; 1993 Jul; 61(1):247-53. PubMed ID: 8515270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an arginine residue at the substrate binding site of Escherichia coli adenylosuccinate synthetase as studied by chemical modification and site-directed mutagenesis.
    Dong Q; Liu F; Myers AM; Fromm HJ
    J Biol Chem; 1991 Jul; 266(19):12228-33. PubMed ID: 2061308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of phosphorylation of 69-kDa human choline acetyltransferase at serine 440 by protein kinase C.
    Dobransky T; Davis WL; Rylett RJ
    J Biol Chem; 2001 Jun; 276(25):22244-50. PubMed ID: 11303024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of essential arginines in the acetate kinase from Methanosarcina thermophila.
    Singh-Wissmann K; Miles RD; Ingram-Smith C; Ferry JG
    Biochemistry; 2000 Apr; 39(13):3671-7. PubMed ID: 10736166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redesign of choline acetyltransferase specificity by protein engineering.
    Cronin CN
    J Biol Chem; 1998 Sep; 273(38):24465-9. PubMed ID: 9733738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine 343 and 350 are two active residues involved in substrate binding by human Type I D-myo-inositol 1,4,5,-trisphosphate 5-phosphatase.
    Communi D; Lecocq R; Erneux C
    J Biol Chem; 1996 May; 271(20):11676-83. PubMed ID: 8662625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.
    Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS
    Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.
    Qamar S; Marsh K; Berry A
    Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-evaluation of the kinetic mechanism of the choline acetyltransferase reaction.
    Hersh LB; Peet M
    J Biol Chem; 1977 Jul; 252(14):4796-802. PubMed ID: 873917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylglyoxal modification of arginines in mammalian D-amino-acid oxidase.
    Vanoni MA; Pilone Simonetta M; Curti B; Negri A; Ronchi S
    Eur J Biochem; 1987 Sep; 167(2):261-7. PubMed ID: 2887428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis evidence for arginine-384 residue at the active site of maize branching enzyme II.
    Cao H; Preiss J
    J Protein Chem; 1999 Apr; 18(3):379-86. PubMed ID: 10395456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of the acetyl-CoA-binding site of rat liver spermidine/spermine N1-acetyltransferase.
    Della Ragione F; Erwin BG; Pegg AE
    Biochem J; 1983 Sep; 213(3):707-12. PubMed ID: 6615455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of functionally important amino-terminal arginines of Agrobacterium tumefaciens ADP-glucose pyrophosphorylase by alanine scanning mutagenesis.
    Gómez-Casati DF; Igarashi RY; Berger CN; Brandt ME; Iglesias AA; Meyer CR
    Biochemistry; 2001 Aug; 40(34):10169-78. PubMed ID: 11513594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate binding and catalytic mechanism of human choline acetyltransferase.
    Kim AR; Rylett RJ; Shilton BH
    Biochemistry; 2006 Dec; 45(49):14621-31. PubMed ID: 17144655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetyl-coenzyme A and coenzyme A analogues. Their effects on rat brain choline acetyltransferase.
    Rossier J
    Biochem J; 1977 Aug; 165(2):321-6. PubMed ID: 921752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of arginine-166 in the active site of Escherichia coli alkaline phosphatase.
    Chaidaroglou A; Brezinski DJ; Middleton SA; Kantrowitz ER
    Biochemistry; 1988 Nov; 27(22):8338-43. PubMed ID: 3072019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.