These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 7493952)
1. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. Blasco R; Wittich RM; Mallavarapu M; Timmis KN; Pieper DH J Biol Chem; 1995 Dec; 270(49):29229-35. PubMed ID: 7493952 [TBL] [Abstract][Full Text] [Related]
2. New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. Nikodem P; Hecht V; Schlömann M; Pieper DH J Bacteriol; 2003 Dec; 185(23):6790-800. PubMed ID: 14617643 [TBL] [Abstract][Full Text] [Related]
3. Formation of protoanemonin from 2-chloro-cis,cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase. Skiba A; Hecht V; Pieper DH J Bacteriol; 2002 Oct; 184(19):5402-9. PubMed ID: 12218027 [TBL] [Abstract][Full Text] [Related]
4. Conversion of 2-chloro-cis,cis-muconate and its metabolites 2-chloro- and 5-chloromuconolactone by chloromuconate cycloisomerases of pJP4 and pAC27. Vollmer MD; Schlömann M J Bacteriol; 1995 May; 177(10):2938-41. PubMed ID: 7751312 [TBL] [Abstract][Full Text] [Related]
5. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Laemmli CM; Schönenberger R; Suter M; Zehnder AJ; van der Meer JR Arch Microbiol; 2002 Jul; 178(1):13-25. PubMed ID: 12070765 [TBL] [Abstract][Full Text] [Related]
6. Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-cis,cis-muconate. Vollmer MD; Fischer P; Knackmuss HJ; Schlömann M J Bacteriol; 1994 Jul; 176(14):4366-75. PubMed ID: 8021223 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1. Cámara B; Nikodem P; Bielecki P; Bobadilla R; Junca H; Pieper DH J Bacteriol; 2009 Aug; 191(15):4905-15. PubMed ID: 19465655 [TBL] [Abstract][Full Text] [Related]
8. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. Moiseeva OV; Solyanikova IP; Kaschabek SR; Gröning J; Thiel M; Golovleva LA; Schlömann M J Bacteriol; 2002 Oct; 184(19):5282-92. PubMed ID: 12218013 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of chloride elimination from 3-chloro- and 2,4-dichloro-cis,cis-muconate: new insight obtained from analysis of muconate cycloisomerase variant CatB-K169A. Kaulmann U; Kaschabek SR; Schlömann M J Bacteriol; 2001 Aug; 183(15):4551-61. PubMed ID: 11443090 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP. Kolomytseva M; Ferraroni M; Chernykh A; Golovleva L; Scozzafava A Biochim Biophys Acta; 2014 Sep; 1844(9):1541-9. PubMed ID: 24768773 [TBL] [Abstract][Full Text] [Related]
11. Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Schlömann M Biodegradation; 1994 Dec; 5(3-4):301-21. PubMed ID: 7765840 [TBL] [Abstract][Full Text] [Related]
12. Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. Plumeier I; Pérez-Pantoja D; Heim S; González B; Pieper DH J Bacteriol; 2002 Aug; 184(15):4054-64. PubMed ID: 12107121 [TBL] [Abstract][Full Text] [Related]
13. Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: indications for functionally convergent evolution among bacterial cycloisomerases. Solyanikova IP; Maltseva OV; Vollmer MD; Golovleva LA; Schlömann M J Bacteriol; 1995 May; 177(10):2821-6. PubMed ID: 7751292 [TBL] [Abstract][Full Text] [Related]
14. Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants. Vollmer MD; Hoier H; Hecht HJ; Schell U; Gröning J; Goldman A; Schlömann M Appl Environ Microbiol; 1998 Sep; 64(9):3290-9. PubMed ID: 9726873 [TBL] [Abstract][Full Text] [Related]
15. Detoxification of protoanemonin by dienelactone hydrolase. Brückmann M; Blasco R; Timmis KN; Pieper DH J Bacteriol; 1998 Jan; 180(2):400-2. PubMed ID: 9440530 [TBL] [Abstract][Full Text] [Related]
16. Pseudomonas aeruginosa strain RW41 mineralizes 4-chlorobenzenesulfonate, the major polar by-product from DDT manufacturing. Blasco R; Ramos JL; Wittich RM Environ Microbiol; 2008 Jun; 10(6):1591-600. PubMed ID: 18331335 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence. Eulberg D; Kourbatova EM; Golovleva LA; Schlömann M J Bacteriol; 1998 Mar; 180(5):1082-94. PubMed ID: 9495745 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. Schlömann M; Fischer P; Schmidt E; Knackmuss HJ J Bacteriol; 1990 Sep; 172(9):5119-29. PubMed ID: 2394680 [TBL] [Abstract][Full Text] [Related]
19. Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. Eulberg D; Golovleva LA; Schlömann M J Bacteriol; 1997 Jan; 179(2):370-81. PubMed ID: 8990288 [TBL] [Abstract][Full Text] [Related]