These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508. deCarvalho AC; Ndi CP; Tsopmo A; Tane P; Ayafor J; Connolly JD; Teem JL Mol Med; 2002 Feb; 8(2):75-87. PubMed ID: 12080183 [TBL] [Abstract][Full Text] [Related]
6. Repairing the basic defect in cystic fibrosis - one approach is not enough. Farinha CM; Matos P FEBS J; 2016 Jan; 283(2):246-64. PubMed ID: 26416076 [TBL] [Abstract][Full Text] [Related]
7. Understanding how cystic fibrosis mutations cause a loss of Cl- channel function. Sheppard DN; Ostedgaard LS Mol Med Today; 1996 Jul; 2(7):290-7. PubMed ID: 8796909 [TBL] [Abstract][Full Text] [Related]
8. Cystic fibrosis and the use of pharmacogenomics to determine surrogate endpoints for drug discovery. Eidelman O; Zhang J; Srivastava M; Pollard HB Am J Pharmacogenomics; 2001; 1(3):223-38. PubMed ID: 12083969 [TBL] [Abstract][Full Text] [Related]
10. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients. Dray-Charier N; Paul A; Scoazec JY; Veissière D; Mergey M; Capeau J; Soubrane O; Housset C Hepatology; 1999 Jun; 29(6):1624-34. PubMed ID: 10347100 [TBL] [Abstract][Full Text] [Related]
11. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Amaral MD Curr Drug Targets; 2011 May; 12(5):683-93. PubMed ID: 21039334 [TBL] [Abstract][Full Text] [Related]
12. New Therapies to Correct the Cystic Fibrosis Basic Defect. Bergeron C; Cantin AM Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34201249 [TBL] [Abstract][Full Text] [Related]
13. Functional characterization of a novel CFTR mutation P67S identified in a patient with atypical cystic fibrosis. Kraus C; Reis A; Naehrlich L; Dötsch J; Korbmacher C; Rauh R Cell Physiol Biochem; 2007; 19(5-6):239-48. PubMed ID: 17495464 [TBL] [Abstract][Full Text] [Related]
15. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426 [TBL] [Abstract][Full Text] [Related]
16. CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia. Zhang W; Zhang Z; Zhang Y; Naren AP Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28869532 [TBL] [Abstract][Full Text] [Related]
17. [From the laboratory to the clinic: CFTR and the therapeutic options for cystic fibrosis]. Mayol J; Alvarez de Arcaya Vicente A; Arbeo Escolar AM; Peña Soria MJ; Alvarez Fernández-Represa J An Med Interna; 2000 Feb; 17(2):92-8. PubMed ID: 10829466 [TBL] [Abstract][Full Text] [Related]
18. New pharmacological approaches for cystic fibrosis: promises, progress, pitfalls. Bell SC; De Boeck K; Amaral MD Pharmacol Ther; 2015 Jan; 145():19-34. PubMed ID: 24932877 [TBL] [Abstract][Full Text] [Related]
19. Vitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel. Fischer H; Schwarzer C; Illek B Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3691-6. PubMed ID: 14993613 [TBL] [Abstract][Full Text] [Related]
20. Spliceosome-mediated RNA trans-splicing with recombinant adeno-associated virus partially restores cystic fibrosis transmembrane conductance regulator function to polarized human cystic fibrosis airway epithelial cells. Liu X; Luo M; Zhang LN; Yan Z; Zak R; Ding W; Mansfield SG; Mitchell LG; Engelhardt JF Hum Gene Ther; 2005 Sep; 16(9):1116-23. PubMed ID: 16149910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]