BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7494831)

  • 1. Preparation and characterization of dextran magnetite-incorporated thermosensitive liposomes: an on-line flow system for quantifying magnetic responsiveness.
    Viroonchatapan E; Ueno M; Sato H; Adachi I; Nagae H; Tazawa K; Horikoshi I
    Pharm Res; 1995 Aug; 12(8):1176-83. PubMed ID: 7494831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic targeting of thermosensitive magnetoliposomes to mouse livers in an in situ on-line perfusion system.
    Viroonchatapan E; Sato H; Ueno M; Adachi I; Tazawa K; Horikoshi I
    Life Sci; 1996; 58(24):2251-61. PubMed ID: 8649212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preparation of magnetoliposomes and its in vivo behavior on ICR mice].
    Wu KS; Tang JT; Liu X; Zhang Q
    Yao Xue Xue Bao; 2004 Apr; 39(4):288-91. PubMed ID: 15303661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes.
    Zhu L; Huo Z; Wang L; Tong X; Xiao Y; Ni K
    Int J Pharm; 2009 Mar; 370(1-2):136-43. PubMed ID: 19114095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors.
    Mitsumori M; Hiraoka M; Shibata T; Okuno Y; Nagata Y; Nishimura Y; Abe M; Hasegawa M; Nagae H; Ebisawa Y
    Hepatogastroenterology; 1996; 43(12):1431-7. PubMed ID: 8975944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibility of thermosensitive magnetoliposomes as a new agent for electromagnetic induced hyperthermia.
    Masuko Y; Tazawa K; Viroonchatapan E; Takemori S; Shimizu T; Fujimaki M; Nagae H; Sato H; Horikoshi I
    Biol Pharm Bull; 1995 Dec; 18(12):1802-4. PubMed ID: 8787814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of intra-arterial hyperthermia using a dextran-magnetite complex.
    Mitsumori M; Hiraoka M; Shibata T; Okuno Y; Masunaga S; Koishi M; Okajima K; Nagata Y; Nishimura Y; Abe M
    Int J Hyperthermia; 1994; 10(6):785-93. PubMed ID: 7533813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting.
    Jain S; Mishra V; Singh P; Dubey PK; Saraf DK; Vyas SP
    Int J Pharm; 2003 Aug; 261(1-2):43-55. PubMed ID: 12878394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of extruded magnetoliposomes.
    Sabaté R; Barnadas-Rodríguez R; Callejas-Fernández J; Hidalgo-Alvarez R; Estelrich J
    Int J Pharm; 2008 Jan; 347(1-2):156-62. PubMed ID: 17692483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration in the temperature-dependent content release property of thermosensitive liposomes in plasma.
    Hosokawa T; Sami M; Kato Y; Hayakawa E
    Chem Pharm Bull (Tokyo); 2003 Nov; 51(11):1227-32. PubMed ID: 14600363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of temperature increase with different amounts of magnetite in liver tissue samples.
    Hilger I; Andrä W; Bähring R; Daum A; Hergt R; Kaiser WA
    Invest Radiol; 1997 Nov; 32(11):705-12. PubMed ID: 9387059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats.
    Minamimura T; Sato H; Kasaoka S; Saito T; Ishizawa S; Takemori S; Tazawa K; Tsukada K
    Int J Oncol; 2000 Jun; 16(6):1153-8. PubMed ID: 10811989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers' components.
    Pippa N; Meristoudi A; Pispas S; Demetzos C
    Int J Pharm; 2015 May; 485(1-2):374-82. PubMed ID: 25776453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a new nanosized As2O3/Mn0.5Zn0.5Fe2O4 thermosensitive magnetoliposome and its antitumor effect on MDA_MB_231 cells.
    Wang L; Wang Z; Liu J; Zhang J; Zhang D
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10755-9. PubMed ID: 22408989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular hyperthermia for cancer using magnetite cationic liposomes: ex vivo study.
    Yanase M; Shinkai M; Honda H; Wakabayashi T; Yoshida J; Kobayashi T
    Jpn J Cancer Res; 1997 Jul; 88(7):630-2. PubMed ID: 9310134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study.
    Shinkai M; Yanase M; Honda H; Wakabayashi T; Yoshida J; Kobayashi T
    Jpn J Cancer Res; 1996 Nov; 87(11):1179-83. PubMed ID: 9045948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic preparation of hollow magnetite microspheres for hyperthermic treatment of cancer.
    Kawashita M; Sadaoka K; Kokubo T; Saito T; Takano M; Araki N; Hiraoka M
    J Mater Sci Mater Med; 2006 Jul; 17(7):605-10. PubMed ID: 16770544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of tegafur magnetic thermosensitive liposomes.
    Zeng Z; Wang X; Zhang Y; Liu X; Zhou W; Li N
    Pharm Dev Technol; 2009; 14(4):350-7. PubMed ID: 19630695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia.
    Kulshrestha P; Gogoi M; Bahadur D; Banerjee R
    Colloids Surf B Biointerfaces; 2012 Aug; 96():1-7. PubMed ID: 22521681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcein release from temperature-sensitive liposome with or without stirring.
    Ono A; Yamaguchi M; Horikoshi I; Shintani T; Ueno M
    Biol Pharm Bull; 1994 Jan; 17(1):166-8. PubMed ID: 8148812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.