These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Ghaderi R; Artursson P; Carlfors J Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010 [TBL] [Abstract][Full Text] [Related]
3. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. Martin TM; Bandi N; Shulz R; Roberts CB; Kompella UB AAPS PharmSciTech; 2002; 3(3):E18. PubMed ID: 12916933 [TBL] [Abstract][Full Text] [Related]
4. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. Young TJ; Johnston KP; Mishima K; Tanaka H J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable bromocryptine mesylate microspheres prepared by a solvent evaporation technique. I: Evaluation of formulation variables on microspheres characteristics for brain delivery. Arica B; Kaş HS; Orman MN; Hincal AA J Microencapsul; 2002; 19(4):473-84. PubMed ID: 12396384 [TBL] [Abstract][Full Text] [Related]
6. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions. Tom JW; Debenedetti PG Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of spray drying as a method for polylactide and polylactide-co-glycolide microsphere preparation. Pavanetto F; Genta I; Giunchedi P; Conti B J Microencapsul; 1993; 10(4):487-97. PubMed ID: 8263677 [TBL] [Abstract][Full Text] [Related]
8. Plasma protein adsorption on biodegradable microspheres consisting of poly(D,L-lactide-co-glycolide), poly(L-lactide) or ABA triblock copolymers containing poly(oxyethylene). Influence of production method and polymer composition. Lück M; Pistel KF; Li YX; Blunk T; Müller RH; Kissel T J Control Release; 1998 Nov; 55(2-3):107-20. PubMed ID: 9795026 [TBL] [Abstract][Full Text] [Related]
9. Influence of formulation variables on the morphology of biodegradable microparticles prepared by spray drying. Clarke N; O'Connor K; Ramtoola Z Drug Dev Ind Pharm; 1998 Feb; 24(2):169-74. PubMed ID: 15605447 [TBL] [Abstract][Full Text] [Related]
10. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Koushik K; Kompella UB Pharm Res; 2004 Mar; 21(3):524-35. PubMed ID: 15070105 [TBL] [Abstract][Full Text] [Related]
11. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters. Felder ChB; Blanco-Príeto MJ; Heizmann J; Merkle HP; Gander B J Microencapsul; 2003; 20(5):553-67. PubMed ID: 12909541 [TBL] [Abstract][Full Text] [Related]
12. Polyethylenglycol-co-poly-D,L-lactide copolymer based microspheres: preparation, characterization and delivery of a model protein. Dorati R; Genta I; Tomasi C; Modena T; Colonna C; Pavanetto F; Perugini P; Conti B J Microencapsul; 2008 Aug; 25(5):330-8. PubMed ID: 18465305 [TBL] [Abstract][Full Text] [Related]
13. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Yeh MK J Microencapsul; 2000; 17(6):743-56. PubMed ID: 11063421 [TBL] [Abstract][Full Text] [Related]
14. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices. Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218 [TBL] [Abstract][Full Text] [Related]
15. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids. Ghaderi R; Artursson P; Carlfors J Eur J Pharm Sci; 2000 Mar; 10(1):1-9. PubMed ID: 10699378 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers: influence of encapsulation technique and polymer composition on particle characteristics. Pistel KF; Bittner B; Koll H; Winter G; Kissel T J Control Release; 1999 Jun; 59(3):309-25. PubMed ID: 10332063 [TBL] [Abstract][Full Text] [Related]
17. Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process. Bleich J; Müller BW J Microencapsul; 1996; 13(2):131-9. PubMed ID: 8999119 [TBL] [Abstract][Full Text] [Related]
18. Plasticization and spraying of poly (DL-lactic acid) using supercritical carbon dioxide: control of particle size. Hao J; Whitaker MJ; Wong B; Serhatkulu G; Shakesheff KM; Howdle SM J Pharm Sci; 2004 Apr; 93(4):1083-90. PubMed ID: 14999744 [TBL] [Abstract][Full Text] [Related]
19. Formation of inhalable rifampicin-poly(L-lactide) microparticles by supercritical anti-solvent process. Patomchaiviwat V; Paeratakul O; Kulvanich P AAPS PharmSciTech; 2008; 9(4):1119-29. PubMed ID: 18989787 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. Bittner B; Kissel T J Microencapsul; 1999; 16(3):325-41. PubMed ID: 10340218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]