These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 7495427)

  • 1. Determination of the curvatures and bending strains in open trileaflet heart valves.
    Corden J; David T; Fisher J
    Proc Inst Mech Eng H; 1995; 209(2):121-8. PubMed ID: 7495427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro determination of the curvatures and bending strains acting on the leaflets of polyurethane trileaflet heart valves during leaflet motion.
    Corden J; David T; Fisher J
    Proc Inst Mech Eng H; 1995; 209(4):243-53. PubMed ID: 8907218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves.
    Chandran KB; Fatemi R; Schoephoerster R; Wurzel D; Hansen G; Pantalos G; Yu LS; Kolff WJ
    Artif Organs; 1989 Apr; 13(2):148-54. PubMed ID: 2705886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of open leaflet geometry on the haemodynamic flow characteristics of polyurethane trileaflet artificial heart valves.
    Corden J; David T; Fisher J
    Proc Inst Mech Eng H; 1996; 210(4):273-87. PubMed ID: 9046188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A synthetic leaflet heart valve with improved opening characteristics.
    Leat ME; Fisher J
    Med Eng Phys; 1994 Nov; 16(6):470-6. PubMed ID: 7858778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents.
    Krucinski S; Vesely I; Dokainish MA; Campbell G
    J Biomech; 1993 Aug; 26(8):929-43. PubMed ID: 8349718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic function of second generation porcine bioprosthetic heart valves.
    Butterfield M; Fisher J; Kearney JN; Davies GA
    J Card Surg; 1991 Dec; 6(4):490-8. PubMed ID: 1815774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Clinically Relevant Elliptical Deformations on the Damage Patterns of Sagging and Stretched Leaflets in a Bioprosthetic Heart Valve.
    Sritharan D; Fathi P; Weaver JD; Retta SM; Wu C; Duraiswamy N
    Cardiovasc Eng Technol; 2018 Sep; 9(3):351-364. PubMed ID: 29948838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics of synthetic flexible leaflet heart valves during accelerated testing.
    D'Souza SS; Butterfield M; Fisher J
    J Heart Valve Dis; 2003 Jan; 12(1):110-9; discussion 119-20. PubMed ID: 12578345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure and hydrodynamic function testing of explanted pericardial and porcine bioprosthetic valves.
    Fisher J; Spyt TJ; Wheatley DJ
    Proc Inst Mech Eng H; 1989; 203(2):65-70. PubMed ID: 2619837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position.
    Chandran KB; Kim SH; Han G
    J Biomech; 1991; 24(6):385-95. PubMed ID: 1856239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A synthetic three-leaflet valve.
    Jansen J; Reul H
    J Med Eng Technol; 1992; 16(1):27-33. PubMed ID: 1640445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Hemodynamic performance of newly developed composite stentless porcine aortic valve: in vitro testing and in vivo experiment with sheep].
    Song GM; Zhou JY; Hu SS; Cui JW; Song YH; Tang Y; Zhang Y; Jiang H; Yuan WM; Song XY
    Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2059-63. PubMed ID: 19080436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro function and durability of a polyurethane heart valve: material considerations.
    Bernacca GM; Mackay TG; Wheatley DJ
    J Heart Valve Dis; 1996 Sep; 5(5):538-42. PubMed ID: 8894995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaflet stress quantification of porcine vs bovine surgical bioprostheses: an
    Stanová V; Godio Raboutet Y; Barragan P; Thollon L; Pibarot P; Rieu R
    Comput Methods Biomech Biomed Engin; 2022 Jan; 25(1):40-51. PubMed ID: 34219548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue buckling as a mechanism of bioprosthetic valve failure.
    Vesely I; Boughner D; Song T
    Ann Thorac Surg; 1988 Sep; 46(3):302-8. PubMed ID: 3137903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new design for polyurethane heart valves.
    Butterfield M; Wheatley DJ; Williams DF; Fisher J
    J Heart Valve Dis; 2001 Jan; 10(1):105-10. PubMed ID: 11206756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaflet opening and closing dynamics of stentless bioprostheses.
    Frost MW; Funderl JA; Klaaborg KE; Wierup P; Sloth E; Nygaard H; Hasenkam JM
    J Heart Valve Dis; 2010 Jul; 19(4):492-8. PubMed ID: 20845898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic function of the second-generation mitroflow pericardial bioprosthesis.
    Jennings LM; El-Gatit A; Nagy ZL; Fisher J; Walker PG; Watterson KG
    Ann Thorac Surg; 2002 Jul; 74(1):63-8. PubMed ID: 12118805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.