These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7495431)

  • 1. An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis.
    Akay M; Aslan N
    Proc Inst Mech Eng H; 1995; 209(2):93-103. PubMed ID: 7495431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical behavior of modular acetabular cups made of poly-ether-ether-ketone: A finite element study.
    Vogel D; Schulze C; Dempwolf H; Kluess D; Bader R
    Proc Inst Mech Eng H; 2018 Oct; 232(10):1030-1038. PubMed ID: 30183510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical assessment of a hip joint stem model made of a PEEK/carbon fibre composite under compression loading.
    Dworak M; Błażewicz S
    Acta Bioeng Biomech; 2016; 18(2):71-9. PubMed ID: 27405412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical and histologic analysis of a retrieved carbon fiber-reinforced poly-ether-ether-ketone composite alumina-bearing liner 28 months after implantation.
    Pace N; Marinelli M; Spurio S
    J Arthroplasty; 2008 Jan; 23(1):151-5. PubMed ID: 18165046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head.
    Scholes SC; Inman IA; Unsworth A; Jones E
    Proc Inst Mech Eng H; 2008 Apr; 222(3):273-83. PubMed ID: 18491697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An isoelastic prosthesis using a new composite material.
    Taylor D; Martin C; Cornelis B; Jones ME
    Proc Inst Mech Eng H; 1993; 207(2):121-5. PubMed ID: 8280313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.
    Rezaei F; Hassani K; Solhjoei N; Karimi A
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):569-80. PubMed ID: 26462678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue failure in the cement mantle of an artificial hip joint.
    Culleton P; Prendergast PJ; Taylor D
    Clin Mater; 1993; 12(2):95-102. PubMed ID: 10148336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pitch-based carbon-fibre-reinforced poly (ether-ether-ketone) OPTIMA assessed as a bearing material in a mobile bearing unicondylar knee joint.
    Scholes SC; Unsworth A
    Proc Inst Mech Eng H; 2009 Jan; 223(1):13-25. PubMed ID: 19239064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface.
    Albert K; Schledjewski R; Harbaugh M; Bleser S; Jamison R; Friedrich K
    Biomed Mater Eng; 1994; 4(3):199-211. PubMed ID: 7950869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis.
    Akay M; Aslan N
    J Biomed Mater Res; 1996 Jun; 31(2):167-82. PubMed ID: 8731205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test.
    Heuer DA; Mann KA
    J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
    Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S32-49. PubMed ID: 8794031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-axial damage and failure of medical grade carbon fibre reinforced PEEK laminates: Experimental testing and computational modelling.
    Gallagher EA; Lamorinière S; McGarry P
    J Mech Behav Biomed Mater; 2018 Jun; 82():154-167. PubMed ID: 29601987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).
    Simsiriwong J; Shrestha R; Shamsaei N; Lugo M; Moser RD
    J Mech Behav Biomed Mater; 2015 Nov; 51():388-97. PubMed ID: 26301567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a carbon-carbon hip prosthesis.
    Christel P; Meunier A; Leclercq S; Bouquet P; Buttazzoni B
    J Biomed Mater Res; 1987 Aug; 21(A2 Suppl):191-218. PubMed ID: 3624286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis.
    Kim K; Forest B; Geringer J
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1158-68. PubMed ID: 22320055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stiffness optimisation of cement and stem materials in total hip replacement.
    Hedia HS
    Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    Biomaterials; 1998 Sep; 19(17):1569-77. PubMed ID: 9830982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.