BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 7495482)

  • 1. Salt-nucleic acid interactions.
    Anderson CF; Record MT
    Annu Rev Phys Chem; 1995; 46():657-700. PubMed ID: 7495482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model.
    Shkel IA
    J Phys Chem B; 2010 Aug; 114(33):10793-803. PubMed ID: 20681741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: a grand canonical Monte Carlo analysis.
    Olmsted MC; Anderson CF; Record MT
    Biopolymers; 1991 Nov; 31(13):1593-604. PubMed ID: 1814506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interpretation of Mg(2+) binding isotherms for nucleic acids using Poisson-Boltzmann theory.
    Misra VK; Draper DE
    J Mol Biol; 1999 Dec; 294(5):1135-47. PubMed ID: 10600372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of metal ion-nucleic acid interactions in solution.
    Pechlaner M; Sigel RK
    Met Ions Life Sci; 2012; 10():1-42. PubMed ID: 22210334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond nucleic acid base pairs: from triads to heptads.
    Sühnel J
    Biopolymers; 2001-2002; 61(1):32-51. PubMed ID: 11891627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer.
    Jezewska MJ; Kim US; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2129-45. PubMed ID: 8652555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of cationic ligands and proteins with small nucleic acids: analytic treatment of the large coulombic end effect on binding free energy as a function of salt concentration.
    Shkel IA; Ballin JD; Record MT
    Biochemistry; 2006 Jul; 45(27):8411-26. PubMed ID: 16819840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of nucleic acids: successes, limitations, and promise.
    Cheatham TE; Young MA
    Biopolymers; 2000-2001; 56(4):232-56. PubMed ID: 11754338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic acid ion structures in the gas phase.
    Abi-Ghanem J; Gabelica V
    Phys Chem Chem Phys; 2014 Oct; 16(39):21204-18. PubMed ID: 25200440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of nucleic acids: A). Molecular dynamics simulations of the oligonucleotide with the modified phosphate/phosphonate internucleotide linkage.
    Barvík I; Stĕpánek J; Bok J
    Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():21-3. PubMed ID: 9789747
    [No Abstract]   [Full Text] [Related]  

  • 12. Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    J Biomol Struct Dyn; 2002 Oct; 20(2):275-90. PubMed ID: 12354079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory for the nonspecific binding of salt to polyelectrolytes: thermodynamic properties.
    Patra CN; Yethiraj A
    Biophys J; 2000 Feb; 78(2):699-706. PubMed ID: 10653783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thermodynamic models, describing formation of "bridges" between nucleic acid molecules and liquid crystals].
    Nechipurenko IuD; Riabokon' VF; Semenov SV; Evdokimov IuM
    Biofizika; 2003; 48(4):635-43. PubMed ID: 14515481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative thermodynamic predication of interactions between nucleic acid and non-nucleic acid species using Microsoft excel.
    Zou J; Li N
    Comput Methods Programs Biomed; 2013 Sep; 111(3):755-62. PubMed ID: 23849929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based design of a highly constrained nucleic acid analogue: improved duplex stabilization by restricting sugar pucker and torsion angle γ.
    Hanessian S; Schroeder BR; Giacometti RD; Merner BL; Ostergaard M; Swayze EE; Seth PP
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11242-5. PubMed ID: 22915274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of conformational transitions in oligonucleotide complexes in presence of Na(+) and Mg(2+) ions, using "staggering zipper" model.
    Blagoi Y; Zozulya V; Egupov S; Onishchenko V; Gladchenko G
    Biopolymers; 2007 May; 86(1):32-41. PubMed ID: 17309076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of nucleic acids by labeled oligonucleotides.
    Murakami A; Nagahara S; Nakaura M; Uematsu H; Mukae M; Makino K
    Nucleic Acids Symp Ser; 1990; (22):27-8. PubMed ID: 1966291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the number of nucleic acid oligomer charges on the salt dependence of stability (DeltaG 37degrees) and melting temperature (Tm): NLPB analysis of experimental data.
    Shkel IA; Record MT
    Biochemistry; 2004 Jun; 43(22):7090-101. PubMed ID: 15170346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NUPACK: Analysis and design of nucleic acid systems.
    Zadeh JN; Steenberg CD; Bois JS; Wolfe BR; Pierce MB; Khan AR; Dirks RM; Pierce NA
    J Comput Chem; 2011 Jan; 32(1):170-3. PubMed ID: 20645303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.