BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7496532)

  • 1. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.
    Lodi T; Goffrini P; Ferrero I; Donnini C
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2201-9. PubMed ID: 7496532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae.
    Donnini C; Lodi T; Ferrero I; Puglisi PP
    Yeast; 1992 Feb; 8(2):83-93. PubMed ID: 1561839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIG1-dependent and MIG1-independent regulation of GAL gene expression in Saccharomyces cerevisiae: role of Imp2p.
    Alberti A; Lodi T; Ferrero I; Donnini C
    Yeast; 2003 Oct; 20(13):1085-96. PubMed ID: 14558142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D; Proft M; Entian KD
    Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae.
    Lodi T; Donnini C; Ferrero I
    J Gen Microbiol; 1991 May; 137(5):1039-44. PubMed ID: 1865178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Saccharomyces cerevisiae IMP2 gene encodes a transcriptional activator that mediates protection against DNA damage caused by bleomycin and other oxidants.
    Masson JY; Ramotar D
    Mol Cell Biol; 1996 May; 16(5):2091-100. PubMed ID: 8628275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae.
    Hu Z; Nehlin JO; Ronne H; Michels CA
    Curr Genet; 1995 Aug; 28(3):258-66. PubMed ID: 8529272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae.
    Coschigano PW; Miller SM; Magasanik B
    Mol Cell Biol; 1991 Sep; 11(9):4455-65. PubMed ID: 1652057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leu343Phe substitution in the Malx3 protein of Saccharomyces cerevisiae increases the constitutivity and glucose insensitivity of MAL gene expression.
    Higgins VJ; Braidwood M; Bissinger P; Dawes IW; Attfield PV
    Curr Genet; 1999 Jun; 35(5):491-8. PubMed ID: 10369955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of the KlDLD gene, encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase in Kluyveromyces lactis: effect of Klhap2 and fog mutations.
    Lodi T; Goffrini P; Bolondi I; Ferrero I
    Curr Genet; 1998 Jul; 34(1):12-20. PubMed ID: 9683671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae.
    Haurie V; Perrot M; Mini T; Jenö P; Sagliocco F; Boucherie H
    J Biol Chem; 2001 Jan; 276(1):76-85. PubMed ID: 11024040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription.
    Rudoni S; Mauri I; Ceriani M; Coccetti P; Martegani E
    Int J Biochem Cell Biol; 2000 Feb; 32(2):215-24. PubMed ID: 10687955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion.
    Grauslund M; Lopes JM; Rønnow B
    Nucleic Acids Res; 1999 Nov; 27(22):4391-8. PubMed ID: 10536147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control.
    Watt R; Piper PW
    Mol Gen Genet; 1997 Jan; 253(4):439-47. PubMed ID: 9037103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p.
    Bali M; Zhang B; Morano KA; Michels CA
    J Biol Chem; 2003 Nov; 278(48):47441-8. PubMed ID: 14500708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity.
    Medintz I; Wang X; Hradek T; Michels CA
    Biochemistry; 2000 Apr; 39(15):4518-26. PubMed ID: 10758001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.
    Zimmermann FK; Scheel I
    Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system.
    Bowman SB; Zaman Z; Collinson LP; Brown AJ; Dawes IW
    Mol Gen Genet; 1992 Jan; 231(2):296-303. PubMed ID: 1310523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally.
    Wendell DL; Bisson LF
    J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.