These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7496800)

  • 1. A light and electron microscopic study of calbindin D-28k immunoreactive double bouquet cells in the human temporal cortex.
    del Río MR; DeFelipe J
    Brain Res; 1995 Aug; 690(1):133-40. PubMed ID: 7496800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities.
    del Rio MR; DeFelipe J
    J Chem Neuroanat; 1997 Oct; 13(4):243-51. PubMed ID: 9412906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey.
    Defelipe J; González-Albo MC; Del Río MR; Elston GN
    J Comp Neurol; 1999 Sep; 412(3):515-26. PubMed ID: 10441237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calretinin-immunoreactive terminals make synapses on calbindin D28k-immunoreactive neurons in the lateral nucleus of the human amygdala.
    Sorvari H; Miettinen R; Soininen H; Paljärvi L; Karkola K; Pitkänen A
    Brain Res; 1998 Feb; 783(2):355-8. PubMed ID: 9507193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity.
    DeFelipe J; Hendry SH; Jones EG
    Brain Res; 1989 Nov; 503(1):49-54. PubMed ID: 2611658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organization of double bouquet cells in monkey striate cortex.
    Peters A; Sethares C
    J Neurocytol; 1997 Dec; 26(12):779-97. PubMed ID: 9482155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy.
    Wittner L; Eross L; Szabó Z; Tóth S; Czirják S; Halász P; Freund TF; Maglóczky ZS
    Neuroscience; 2002; 115(3):961-78. PubMed ID: 12435433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calbindin immunoreactivity in normal human temporal neocortex.
    Ferrer I; Tuñón T; Soriano E; del Rio A; Iraizoz I; Fonseca M; Guionnet N
    Brain Res; 1992 Feb; 572(1-2):33-41. PubMed ID: 1611533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons.
    DeFelipe J; Hendry SH; Hashikawa T; Molinari M; Jones EG
    Neuroscience; 1990; 37(3):655-73. PubMed ID: 1701039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus.
    Gulyás AI; Megías M; Emri Z; Freund TF
    J Neurosci; 1999 Nov; 19(22):10082-97. PubMed ID: 10559416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex.
    del Río MR; DeFelipe J
    J Comp Neurol; 1996 Jun; 369(3):472-82. PubMed ID: 8743426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calbindin D-28k immunoreactivity in the rat accessory olfactory bulb.
    Porteros A; Arévalo R; Crespo C; García-Ojeda E; Briñòn JG; Aijón J; Alonso JR
    Brain Res; 1995 Aug; 689(1):93-100. PubMed ID: 8528711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular localization of the K+ channel subunit Kv3.1b in selected rat CNS neurons.
    Sekirnjak C; Martone ME; Weiser M; Deerinck T; Bueno E; Rudy B; Ellisman M
    Brain Res; 1997 Aug; 766(1-2):173-87. PubMed ID: 9359601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyramidal cell dendrites are the primary targets of calbindin D28k-immunoreactive interneurons in the hippocampus.
    Gulyás AI; Freund TF
    Hippocampus; 1996; 6(5):525-34. PubMed ID: 8953305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efferent synaptic connections of dopaminergic neurons grafted into the caudate nucleus of experimentally induced parkinsonian monkeys are different from those of control animals.
    Leranth C; Sladek JR; Roth RH; Redmond DE
    Exp Brain Res; 1998 Dec; 123(3):323-33. PubMed ID: 9860271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey.
    Somogyi P; Cowey A
    J Comp Neurol; 1981 Feb; 195(4):547-66. PubMed ID: 7462443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer's disease.
    Fonseca M; Soriano E
    Brain Res; 1995 Sep; 691(1-2):83-91. PubMed ID: 8590068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous inhibitory circuits in cortical tubers of human tuberous sclerosis complex associated with refractory epilepsy: aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex.
    Valencia I; Legido A; Yelin K; Khurana D; Kothare SV; Katsetos CD
    J Child Neurol; 2006 Dec; 21(12):1058-63. PubMed ID: 17156698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus.
    Maglóczky Z; Wittner L; Borhegyi Z; Halász P; Vajda J; Czirják S; Freund TF
    Neuroscience; 2000; 96(1):7-25. PubMed ID: 10683405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parvalbumin and calbindin D-28K in the human entorhinal cortex. An immunohistochemical study.
    Tuñón T; Insausti R; Ferrer I; Sobreviela T; Soriano E
    Brain Res; 1992 Aug; 589(1):24-32. PubMed ID: 1422819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.