These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7496823)

  • 1. Muscle activation in the elbow-forearm complex during rapid elbow extension.
    Yamazaki Y; Itoh H; Ohkuwa T
    Brain Res Bull; 1995; 38(3):285-95. PubMed ID: 7496823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal activation and coactivation in antagonistic muscles during rapid goal-directed movements.
    Yamazaki Y; Ohkuwa T; Itoh H; Suzuki M
    Brain Res Bull; 1994; 34(6):587-93. PubMed ID: 7922602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise.
    Bazzucchi I; Sbriccoli P; Marzattinocci G; Felici F
    Muscle Nerve; 2006 Feb; 33(2):191-9. PubMed ID: 16307438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent coactivation of shoulder and elbow muscles.
    Gribble PL; Ostry DJ
    Exp Brain Res; 1998 Dec; 123(3):355-60. PubMed ID: 9860276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of rapid elbow extension movement.
    Yamazaki Y; Suzuki M; Mano T
    Brain Res Bull; 1993; 30(1-2):11-9. PubMed ID: 8420620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial zones for muscle coactivation and the control of postural stability.
    Levin MF; Dimov M
    Brain Res; 1997 May; 757(1):43-59. PubMed ID: 9200498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle activity patterns during quick increase of movement amplitude in rapid elbow extensions.
    Takatoku N; Fujiwara M
    J Electromyogr Kinesiol; 2010 Apr; 20(2):290-7. PubMed ID: 19375349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the electromyographic activity of human elbow joint muscles during slow linear flexion movements in isotorque conditions.
    Tal'nov AN; Serenko SG; Strafun SS; Kostyukov AI
    Neuroscience; 1999 Mar; 90(3):1123-36. PubMed ID: 10218811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity-specific training in elbow flexors.
    Pousson M; Amiridis IG; Cometti G; Van Hoecke J
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):367-72. PubMed ID: 10483808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coactivation in arm and shoulder muscles during voluntary fixation of a single joint.
    Yamazaki Y; Suzuki M; Ohkuwa T; Itoh H
    Brain Res Bull; 2003 Feb; 59(6):439-46. PubMed ID: 12576140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of mono- and bi-articular muscles in multi-degree of freedom elbow movements.
    Sergio LE; Ostry DJ
    Exp Brain Res; 1994; 97(3):551-5. PubMed ID: 8187866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of biceps brachii and brachioradialis for the control of elbow flexion and extension movements.
    von Werder SC; Disselhorst-Klug C
    J Electromyogr Kinesiol; 2016 Jun; 28():67-75. PubMed ID: 27061680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for muscle activation during isometric torque generation at the human elbow.
    Buchanan TS; Rovai GP; Rymer WZ
    J Neurophysiol; 1989 Dec; 62(6):1201-12. PubMed ID: 2600619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of motor evoked potentials in biceps brachii preceding pronator contraction.
    Gerachshenko T; Stinear JW
    Exp Brain Res; 2007 Dec; 183(4):531-9. PubMed ID: 17665175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of muscle pain on elbow flexion and coactivation tasks.
    Ervilha UF; Arendt-Nielsen L; Duarte M; Graven-Nielsen T
    Exp Brain Res; 2004 May; 156(2):174-82. PubMed ID: 14747884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromyogram coactivation patterns of the elbow antagonist muscles during slow isokinetic movement.
    Solomonow M; Baratta R; Zhou BH; D'Ambrosia R
    Exp Neurol; 1988 Jun; 100(3):470-7. PubMed ID: 3366200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tennis players show a lower coactivation of the elbow antagonist muscles during isokinetic exercises.
    Bazzucchi I; Riccio ME; Felici F
    J Electromyogr Kinesiol; 2008 Oct; 18(5):752-9. PubMed ID: 17449279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid goal-directed elbow flexion movements: limitations of the speed control system due to neural constraints.
    Benecke R; Meinck HM; Conrad B
    Exp Brain Res; 1985; 59(3):470-7. PubMed ID: 4029322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.