BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7496888)

  • 1. Analysis of micellar and vesicular lecithin and cholesterol in model bile using 1H- and 31P-NMR.
    de Graaf MP; Groen AK; Bovée WM
    MAGMA; 1995 Jul; 3(2):67-75. PubMed ID: 7496888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of 1H-NMR to determine the distribution of lecithin between the micellar and vesicular phases in model bile.
    Groen AK; Goldhoorn BG; Egbers PH; Chamuleau RA; Tytgat GN; Bovée WM
    J Lipid Res; 1990 Jul; 31(7):1315-21. PubMed ID: 2401862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile.
    Donovan JM; Timofeyeva N; Carey MC
    J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance spectroscopy to determine the micellar cholesterol in human bile.
    Ellul JP; Murphy GM; Parkes HG; Slapa RZ; Dowling RH
    FEBS Lett; 1992 Mar; 300(1):30-2. PubMed ID: 1547885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation and quantitation of cholesterol "carriers" in bile.
    Donovan JM; Carey MC
    Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities.
    Cohen DE; Carey MC
    J Lipid Res; 1991 Aug; 32(8):1291-302. PubMed ID: 1770311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of mixtures of bile salt taurine conjugates between lecithin-cholesterol vesicles and aqueous media: an empirical model.
    Heuman DM
    J Lipid Res; 1997 Jun; 38(6):1217-28. PubMed ID: 9215549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between biliary lipid micelles and intestinal brush border membranes investigated by 1H and 31P nuclear magnetic resonance.
    Tellier C; Vallet-Strouve C; Akoka S; Poignant S
    Eur Biophys J; 1987; 15(3):177-84. PubMed ID: 3443080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid composition of lecithin is a key factor in bile metastability in supersaturated model bile systems.
    Tao S; Tazuma S; Kajiyama G
    Biochim Biophys Acta; 1993 Apr; 1167(2):142-6. PubMed ID: 8466941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular species composition of inter-mixed micellar/vesicular bile salt concentrations in model bile: dependence upon hydrophilic-hydrophobic balance.
    Donovan JM; Jackson AA; Carey MC
    J Lipid Res; 1993 Jul; 34(7):1131-40. PubMed ID: 8371061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous bile salt-lecithin-cholesterol systems: equilibrium aspects.
    Carey MC
    Hepatology; 1984; 4(5 Suppl):151S-154S. PubMed ID: 6479872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth.
    Tazuma S; Ochi H; Teramen K; Yamashita Y; Horikawa K; Miura H; Hirano N; Sasaki M; Aihara N; Hatsushika S
    Biochim Biophys Acta; 1994 Nov; 1215(1-2):74-8. PubMed ID: 7948010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential patterns of lipid-protein association in fast and slow cholesterol nucleating human gallbladder biles: implications for cholesterol nucleation from biliary lipid carriers.
    Ginanni Corradini S; Alvaro D; Giacomelli L; Cedola M; Angelico M
    Biochim Biophys Acta; 1991 Oct; 1086(1):125-33. PubMed ID: 1954239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lecithin hydrophobicity modulates the process of cholesterol crystal nucleation and growth in supersaturated model bile systems.
    Ochi H; Tazuma S; Kajiyama G
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):139-44. PubMed ID: 8761463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of platelet-activating factor (PAF), lyso-PAF and lysophosphatidylcholine on phosphatidylcholine bilayers, an ESR, 31P-NMR and X-ray diffraction study.
    Olivier JL; Chachaty C; Quinn PJ; Wolf C
    J Lipid Mediat; 1991; 3(3):311-32. PubMed ID: 1663404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro determination by 1H-NMR studies that bile with shorter nucleation times contain cholesterol-enriched vesicles.
    Sequeira SS; Parkes HG; Ellul JP; Murphy GM
    Biochim Biophys Acta; 1995 Jun; 1256(3):360-6. PubMed ID: 7786900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions.
    Mazer NA; Benedek GB; Carey MC
    Biochemistry; 1980 Feb; 19(4):601-15. PubMed ID: 7356951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR studies on phospholipid bilayers. Some factors affecting lipid distribution.
    Berden JA; Barker RW; Radda GK
    Biochim Biophys Acta; 1975 Jan; 375(2):186-208. PubMed ID: 235977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of lecithin on intestinal cholesterol uptake by rat intestine in vitro.
    Rampone AJ
    J Physiol; 1973 Mar; 229(2):505-14. PubMed ID: 4724834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid determination by centrifugal ultrafiltration of inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile: influence of Donnan equilibrium effects.
    Donovan JM; Jackson AA
    J Lipid Res; 1993 Jul; 34(7):1121-9. PubMed ID: 8371060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.