These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 74979)

  • 41. The formation of phenylethane-1,2-diol 2-acetate in the metabolism of styrene oxide by rabbit liver microsomes in vitro.
    Battistini C; Bellucci G; Mastrorilli E
    Xenobiotica; 1979 Jan; 9(1):57-61. PubMed ID: 83739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Absence of microbial mineralization of lignin in anaerobic enrichment cultures.
    Odier E; Monties B
    Appl Environ Microbiol; 1983 Sep; 46(3):661-5. PubMed ID: 6639020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Asymmetric biosynthesis of chiral styrene oxide].
    Wu J; Cheng SH; Sha Q; Yang L; Sun WR
    Sheng Wu Gong Cheng Xue Bao; 2000 Sep; 16(5):627-30. PubMed ID: 11191772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Partial conversion of cinnamic acid into styrene by growing cultures and cell-free extracts of the yeast Cryptococcus elinovii.
    Middelhoven WJ; Gelpke MD
    Antonie Van Leeuwenhoek; 1995; 67(2):217-9. PubMed ID: 7771769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accelerated mineralization of two organophosphate insecticides in the rhizosphere.
    Hsu TS; Bartha R
    Appl Environ Microbiol; 1979 Jan; 37(1):36-41. PubMed ID: 760638
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest.
    Maddela NR; Masabanda M; Leiva-Mora M
    Water Sci Technol; 2015; 71(10):1554-61. PubMed ID: 26442498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil.
    Assaf NA; Turco RF
    Biodegradation; 1994 Mar; 5(1):29-35. PubMed ID: 7764925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of interactions, sessile growth and nutrient amendments on the degradative efficiency of a microbial consortium.
    Wolfaardt GM; Lawrence JR; Robarts RD; Caldwell DE
    Can J Microbiol; 1994 May; 40(5):331-40. PubMed ID: 8069778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodegradation of phthalic acid esters in river water and activated sludge.
    Saeger VW; Tucker ES
    Appl Environ Microbiol; 1976 Jan; 31(1):29-34. PubMed ID: 942207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of olestra, a non caloric fat replacer, by microorganisms isolated from activated sludge and other environments.
    Lee DM; Ventullo RM
    Biodegradation; 1996 Jun; 7(3):257-65. PubMed ID: 8782396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG; de Roo G; O'Connor KE
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activity, ecology, and population dynamics of microorganisms in soil.
    Stotzky G
    CRC Crit Rev Microbiol; 1972 Nov; 2(1):59-137. PubMed ID: 4567450
    [No Abstract]   [Full Text] [Related]  

  • 53. [Studies of the reciprocal effect between soil reaction and microorganisms. 1. The change in the soil reaction by the microflora of the soil].
    Hirte W
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 125(5):458-70. PubMed ID: 4926736
    [No Abstract]   [Full Text] [Related]  

  • 54. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.
    Li X; Li P; Lin X; Zhang C; Li Q; Gong Z
    J Hazard Mater; 2008 Jan; 150(1):21-6. PubMed ID: 17512657
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of ioxynil degraders from soil-enrichment cultures.
    Hsu JC; Camper ND
    Can J Microbiol; 1976 Apr; 22(4):537-43. PubMed ID: 944081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium.
    Fernando T; Bumpus JA; Aust SD
    Appl Environ Microbiol; 1990 Jun; 56(6):1666-71. PubMed ID: 2383008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase.
    Cox HH; Faber BW; Van Heiningen WN; Radhoe H; Doddema HJ; Harder W
    Appl Environ Microbiol; 1996 Apr; 62(4):1471-4. PubMed ID: 8919815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation of pyrene by immobilized microorganisms in saline-alkaline soil.
    Wang S; Li X; Liu W; Li P; Kong L; Ren W; Wu H; Tu Y
    J Environ Sci (China); 2012; 24(9):1662-9. PubMed ID: 23520875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA binding of [14C]styrene in isolated rat hepatocytes.
    Legraverend C; Elovaara E; Zitting A; Heinonen T; Uusvuori R
    Chem Biol Interact; 1984 Sep; 51(1):91-102. PubMed ID: 6744477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Release of soil bound (nonextractable) residues by various physiological groups of microorganisms.
    Khan SU; Ivarson KC
    J Environ Sci Health B; 1982; 17(6):737-49. PubMed ID: 7166631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.