These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7498396)

  • 21. Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.
    Abraham A; Gotkine M; Drory VE; Blumen SC
    J Neurol Sci; 2013 Nov; 334(1-2):102-5. PubMed ID: 23962698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of conditioning cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing.
    Fung J; Barbeau H
    J Neurophysiol; 1994 Nov; 72(5):2090-104. PubMed ID: 7884446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent.
    Classen J; Steinfelder B; Liepert J; Stefan K; Celnik P; Cohen LG; Hess A; Kunesch E; Chen R; Benecke R; Hallett M
    Exp Brain Res; 2000 Jan; 130(1):48-59. PubMed ID: 10638440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of the withdrawal reflex during hemiplegic gait: effect of stimulation site and gait phase.
    Spaich EG; Hinge HH; Arendt-Nielsen L; Andersen OK
    Clin Neurophysiol; 2006 Nov; 117(11):2482-95. PubMed ID: 16949341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "Threshold-level" multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring.
    Calancie B; Harris W; Broton JG; Alexeeva N; Green BA
    J Neurosurg; 1998 Mar; 88(3):457-70. PubMed ID: 9488299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical activity after stimulation of the corticospinal tract in the spinal cord.
    Costa P; Deletis V
    Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of cutaneous perception by magnetic pulse stimulation of the human brain.
    Seyal M; Masuoka LK; Browne JK
    Electroencephalogr Clin Neurophysiol; 1992 Dec; 85(6):397-401. PubMed ID: 1282458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord.
    Knikou M; Kay E; Schmit BD
    Exp Neurol; 2007 Jul; 206(1):146-58. PubMed ID: 17543951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects from lumbar nerve root transection in rats on spinal somatosensory and motor-evoked potentials.
    Jou IM
    Spine (Phila Pa 1976); 2004 Jan; 29(2):147-55. PubMed ID: 14722405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The gain of initial somatosensory evoked potentials alters with practice of an accurate motor task.
    Nelson AJ; Brooke JD; McIlroy WE; Bishop DC; Norrie RG
    Brain Res; 2001 Feb; 890(2):272-9. PubMed ID: 11164793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gating of somatosensory evoked potentials during voluntary movement of the lower limb in man.
    Morita H; Petersen N; Nielsen J
    Exp Brain Res; 1998 May; 120(2):143-52. PubMed ID: 9629956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of body and foot positions on the somatosensory evoked potentials.
    Gavrilenko T; Gatev P; Popivanov D; Gantchev GN
    Act Nerv Super (Praha); 1990 Jun; 32(2):81-6. PubMed ID: 2399802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cortical distribution of muscle and cutaneous afferent projections from the human foot.
    Macefield G; Burke D; Gandevia SC
    Electroencephalogr Clin Neurophysiol; 1989 Jun; 72(6):518-28. PubMed ID: 2471621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical evoked potentials by stimulation of the vesicourethral junction: clinical value and neurophysiological considerations.
    Gänzer H; Madersbacher H; Rumpl E
    J Urol; 1991 Jul; 146(1):118-23. PubMed ID: 2056569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of lower limb withdrawal reflexes during gait: a topographical study.
    Spaich EG; Arendt-Nielsen L; Andersen OK
    J Neurophysiol; 2004 Jan; 91(1):258-66. PubMed ID: 12968008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterising the central mechanisms of sensory modulation in human swallowing motor cortex.
    Gow D; Hobson AR; Furlong P; Hamdy S
    Clin Neurophysiol; 2004 Oct; 115(10):2382-90. PubMed ID: 15351381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task.
    Schubert M; Curt A; Colombo G; Berger W; Dietz V
    Exp Brain Res; 1999 Jun; 126(4):583-8. PubMed ID: 10422722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppressive musculocutaneous reflexes in tibialis anterior following upper leg stimulation at the end of the swing phase.
    Van de Crommert HW; Steijvers PJ; Mulder T; Duysens J
    Exp Brain Res; 2003 Apr; 149(4):405-12. PubMed ID: 12677320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cutaneous reflex modulation during obstacle avoidance under conditions of normal and degraded visual input.
    Marigold DS; Chang AJ; Lajoie K
    Exp Brain Res; 2017 Aug; 235(8):2483-2493. PubMed ID: 28512726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordination of two-joint rectus femoris and hamstrings during the swing phase of human walking and running.
    Prilutsky BI; Gregor RJ; Ryan MM
    Exp Brain Res; 1998 Jun; 120(4):479-86. PubMed ID: 9655233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.