These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7498493)

  • 1. Aggregated DNA in ethanol solution.
    Piskur J; Rupprecht A
    FEBS Lett; 1995 Nov; 375(3):174-8. PubMed ID: 7498493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanochemical study of NaDNA and NaDNA-netropsin fibers in ethanol-water and trifluoroethanol-water solutions.
    Song Z; Rupprecht A; Fritzsche H
    Biophys J; 1995 Mar; 68(3):1050-62. PubMed ID: 7756525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanochemical study of MgDNA fibers in ethanol-water solutions.
    Schultz J; Rupprecht A; Song Z; Piskur J; Nordenskiöld L; Lahajnar G
    Biophys J; 1994 Mar; 66(3 Pt 1):810-9. PubMed ID: 8011913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monovalent cation size and DNA conformational stability.
    Stellwagen E; Muse JM; Stellwagen NC
    Biochemistry; 2011 Apr; 50(15):3084-94. PubMed ID: 21410141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in conformation, stability and condensation of DNA by univalent and divalent cations in methanol-water mixtures.
    Votavová H; Kucerová D; Felsberg J; Sponar J
    J Biomol Struct Dyn; 1986 Dec; 4(3):477-89. PubMed ID: 3271452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of the nature of a monovalent counterion on the secondary structure of DNA is aqueous solutions].
    Kuznetsov IA; Apolonnik NV; Iachmenev VV; Shagalov LB; Vaĭnberg IuP
    Biofizika; 1977; 22(1):38-41. PubMed ID: 849508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of melting temperature and temperature melting range for DNA with multi-peak differential melting curves.
    Lando DY; Fridman AS; Chang CL; Grigoryan IE; Galyuk EN; Murashko ON; Chen CC; Hu CK
    Anal Biochem; 2015 Jun; 479():28-36. PubMed ID: 25640587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of DNA melting in concentrated water-alcohol solutions.
    Mikhailenko IA; Shlyakhtenko LS
    J Biomol Struct Dyn; 1984 Jun; 1(6):1501-10. PubMed ID: 6400831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of enthalpy of B-A transition of DNA in aqueous-ethanol solutions].
    Minasian KA; Vorob'ev AF; Malenkov GG
    Mol Biol (Mosk); 1987; 21(5):1329-38. PubMed ID: 3683375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational transitions of alternating purine-pyrimidine DNAs in perchlorate ethanol solutions.
    Vorlícková M
    Biophys J; 1995 Nov; 69(5):2033-43. PubMed ID: 8580346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stability of low-humidity single DNA molecules.
    Hormeño S; Ibarra B; Valpuesta JM; Carrascosa JL; Arias-Gonzalez JR
    Biopolymers; 2012 Apr; 97(4):199-208. PubMed ID: 22020764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational transitions of duplex and triplex nucleic acid helices: thermodynamic analysis of effects of salt concentration on stability using preferential interaction coefficients.
    Bond JP; Anderson CF; Record MT
    Biophys J; 1994 Aug; 67(2):825-36. PubMed ID: 7948695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting transition of oriented Li-DNA fibers submerged in ethanol solutions.
    González A; Wildes AR; Mossou E; Cristiglio V; Moiroux G; Garden JL; Cuesta-López S; Theodorakopoulos N; Peyrard M
    Biopolymers; 2021 Mar; 112(3):e23422. PubMed ID: 33600618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-Energy Profiles for A-/B-DNA Conformational Transitions in Isolated and Aggregated States from All-Atom Molecular Dynamics Simulation.
    Lai CT; Schatz GC
    J Phys Chem B; 2018 Aug; 122(33):7990-7996. PubMed ID: 30067905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic effects on the stability of condensed DNA in the presence of divalent cations.
    Duguid JG; Bloomfield VA
    Biophys J; 1996 Jun; 70(6):2838-46. PubMed ID: 8744321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Conformational transition within the A-form of complementary nucleic acids in solution].
    Polet AI; Ivanov VI; Minchenkova LE
    Mol Biol (Mosk); 1976; 10(2):675-82. PubMed ID: 1053051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the mechanical stability of DNA in the presence of monovalent cations.
    Vlassakis J; Williams J; Hatch K; Danilowicz C; Coljee VW; Prentiss M
    J Am Chem Soc; 2008 Apr; 130(15):5004-5. PubMed ID: 18357985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA condensation by cobalt hexaammine (III) in alcohol-water mixtures: dielectric constant and other solvent effects.
    Arscott PG; Ma C; Wenner JR; Bloomfield VA
    Biopolymers; 1995 Sep; 36(3):345-64. PubMed ID: 7669919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.