These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7498542)

  • 1. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid.
    Eggert C; Temp U; Dean JF; Eriksson KE
    FEBS Lett; 1995 Dec; 376(3):202-6. PubMed ID: 7498542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus.
    Eggert C
    Microbiol Res; 1997 Sep; 152(3):315-8. PubMed ID: 9352667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus.
    Temp U; Eggert C
    Appl Environ Microbiol; 1999 Feb; 65(2):389-95. PubMed ID: 9925558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase.
    Christen S; Southwell-Keely PT; Stocker R
    Biochemistry; 1992 Sep; 31(34):8090-7. PubMed ID: 1324727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous determination of 3-hydroxyanthranilic and cinnabarinic acid by high-performance liquid chromatography with photometric or electrochemical detection.
    Christen S; Stocker R
    Anal Biochem; 1992 Feb; 200(2):273-9. PubMed ID: 1632490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Manthey MK; Pyne SG; Truscott RJ
    Biochim Biophys Acta; 1990 May; 1034(2):207-12. PubMed ID: 2162210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer.
    Lomascolo A; Record E; Herpoël-Gimbert I; Delattre M; Robert JL; Georis J; Dauvrin T; Sigoillot JC; Asther M
    J Appl Microbiol; 2003; 94(4):618-24. PubMed ID: 12631197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome sequence of the fungus Pycnoporus sanguineus, which produces cinnabarinic acid and pH- and thermo- stable laccases.
    Lin W; Jia G; Sun H; Sun T; Hou D
    Gene; 2020 Jun; 742():144586. PubMed ID: 32179171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-Hydroxyanthranilic acid-derived compounds formed through electrochemical oxidation.
    Iwahashi H
    J Chromatogr B Biomed Sci Appl; 1999 Dec; 736(1-2):237-45. PubMed ID: 10677004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus.
    Jonas U; Hammer E; Haupt ET; Schauer F
    Arch Microbiol; 2000 Dec; 174(6):393-8. PubMed ID: 11195094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus.
    Eggert C; Temp U; Eriksson KE
    FEBS Lett; 1997 Apr; 407(1):89-92. PubMed ID: 9141487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of lactobionic acid from lactose using the cellobiose dehydrogenase-3-HAA-laccase system from Pycnoporus sp. SYBC-L10.
    Tian Q; Feng Y; Huang H; Zhang J; Yu Y; Guan Z; Cai Y; Liao X
    Lett Appl Microbiol; 2018 Dec; 67(6):589-597. PubMed ID: 30194841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus.
    Eggert C; LaFayette PR; Temp U; Eriksson KE; Dean JF
    Appl Environ Microbiol; 1998 May; 64(5):1766-72. PubMed ID: 9572949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi.
    Antorini M; Herpoël-Gimbert I; Choinowski T; Sigoillot JC; Asther M; Winterhalter K; Piontek K
    Biochim Biophys Acta; 2002 Jan; 1594(1):109-14. PubMed ID: 11825613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Optimization of conditions for cultivation of the basidiomycete Coriolus hirsutus--producer of extracellular laccase].
    Koroleva OV; Stepanova EV; Gavrilova VP; Iakovleva NS; Landesman EO; Iaropolov AI
    Prikl Biokhim Mikrobiol; 2000; 36(1):30-6. PubMed ID: 10752081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a new laccase isoform from the white-rot fungi Pycnoporus cinnabarinus strain ss3.
    Otterbein L; Record E; Chereau D; Herpoël I; Asther M; Moukha SM
    Can J Microbiol; 2000 Aug; 46(8):759-63. PubMed ID: 10941525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase.
    Eggert C; Temp U; Dean JF; Eriksson KE
    FEBS Lett; 1996 Aug; 391(1-2):144-8. PubMed ID: 8706903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenoxazinone synthase: mechanism for the formation of the phenoxazinone chromophore of actinomycin.
    Barry CE; Nayar PG; Begley TP
    Biochemistry; 1989 Jul; 28(15):6323-33. PubMed ID: 2477054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models.
    d'Acunzo F; Galli C
    Eur J Biochem; 2003 Sep; 270(17):3634-40. PubMed ID: 12919328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Hydroxyanthranilate in Cryptococcus neoformans: a secreted reductant that does not enable wood rot.
    Jacobson ES; Milhausen SM; Manthey MK
    Med Mycol; 2003 Aug; 41(4):309-20. PubMed ID: 12964724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.