These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7498740)

  • 1. Functional studies of the carboxy-terminal repeat domain of Drosophila RNA polymerase II in vivo.
    Brickey WJ; Greenleaf AL
    Genetics; 1995 Jun; 140(2):599-613. PubMed ID: 7498740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads.
    Lu F; Portz B; Gilmour DS
    Mol Cell; 2019 Mar; 73(6):1232-1242.e4. PubMed ID: 30765194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila.
    Jokerst RS; Weeks JR; Zehring WA; Greenleaf AL
    Mol Gen Genet; 1989 Jan; 215(2):266-75. PubMed ID: 2496296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of the RNA polymerase II CTD in Drosophila.
    Lu F; Gilmour DS
    Methods; 2019 Apr; 159-160():129-137. PubMed ID: 30684537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression analysis reveals a functional difference between the serines in positions two and five in the consensus sequence of the C-terminal domain of yeast RNA polymerase II.
    Yuryev A; Corden JL
    Genetics; 1996 Jun; 143(2):661-71. PubMed ID: 8725217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae.
    Kobor MS; Simon LD; Omichinski J; Zhong G; Archambault J; Greenblatt J
    Mol Cell Biol; 2000 Oct; 20(20):7438-49. PubMed ID: 11003641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster.
    Tombácz I; Schauer T; Juhász I; Komonyi O; Boros I
    Gene; 2009 Oct; 446(2):58-67. PubMed ID: 19632310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic interactions between alleles of the RpII215 locus in Drosophila melanogaster.
    Mortin MA; Kim WJ; Huang J
    Genetics; 1988 Aug; 119(4):863-73. PubMed ID: 3137121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the eukaryotic transcription apparatus: features of the gene for the largest subunit of Drosophila RNA polymerase II.
    Biggs J; Searles LL; Greenleaf AL
    Cell; 1985 Sep; 42(2):611-21. PubMed ID: 2992806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clonal analysis of two mutations in the large subunit of RNA polymerase II of Drosophila.
    Mortin MA; Perrimon N; Bonner JJ
    Mol Gen Genet; 1985; 199(3):421-6. PubMed ID: 3929014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro.
    Zehring WA; Lee JM; Weeks JR; Jokerst RS; Greenleaf AL
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):3698-702. PubMed ID: 3131761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping mutations in genes encoding the two large subunits of Drosophila RNA polymerase II defines domains essential for basic transcription functions and for proper expression of developmental genes.
    Chen Y; Weeks J; Mortin MA; Greenleaf AL
    Mol Cell Biol; 1993 Jul; 13(7):4214-22. PubMed ID: 8321225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assaying CTD kinases in vitro and phosphorylation-modulated properties of RNA polymerase II in vivo.
    Morris DP; Lee JM; Sterner DE; Brickey WJ; Greenleaf AL
    Methods; 1997 Jul; 12(3):264-75. PubMed ID: 9237170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
    Janke AM; Seo DH; Rahmanian V; Conicella AE; Mathews KL; Burke KA; Mittal J; Fawzi NL
    Biochemistry; 2018 May; 57(17):2549-2563. PubMed ID: 28945358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxy terminal domain of the largest subunit of RNA polymerase II of Leishmania donovani has an unusually low number of phosphorylation sites.
    Dasgupta A; Sharma S; Das A; Sarkar D; Majumder H
    Med Sci Monit; 2002 May; 8(5):CR341-50. PubMed ID: 12011776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse genetics of Drosophila RNA polymerase II: identification and characterization of RpII140, the genomic locus for the second-largest subunit.
    Hamilton BJ; Mortin MA; Greenleaf AL
    Genetics; 1993 Jun; 134(2):517-29. PubMed ID: 8325487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA polymerase II carboxy-terminal domain contributes to the response to multiple acidic activators in vitro.
    Liao SM; Taylor IC; Kingston RE; Young RA
    Genes Dev; 1991 Dec; 5(12B):2431-40. PubMed ID: 1752437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain.
    Gibbs EB; Lu F; Portz B; Fisher MJ; Medellin BP; Laremore TN; Zhang YJ; Gilmour DS; Showalter SA
    Nat Commun; 2017 May; 8():15233. PubMed ID: 28497798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.