These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 7498765)

  • 1. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations.
    West ML; Corden JL
    Genetics; 1995 Aug; 140(4):1223-33. PubMed ID: 7498765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression analysis reveals a functional difference between the serines in positions two and five in the consensus sequence of the C-terminal domain of yeast RNA polymerase II.
    Yuryev A; Corden JL
    Genetics; 1996 Jun; 143(2):661-71. PubMed ID: 8725217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation.
    Xiao H; Lis JT; Xiao H; Greenblatt J; Friesen JD
    Nucleic Acids Res; 1994 Jun; 22(11):1966-73. PubMed ID: 8029001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats.
    Chapman AB; Agabian N
    J Biol Chem; 1994 Feb; 269(7):4754-60. PubMed ID: 8106443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II.
    Nonet M; Sweetser D; Young RA
    Cell; 1987 Sep; 50(6):909-15. PubMed ID: 3304659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1.
    Peterson CL; Kruger W; Herskowitz I
    Cell; 1991 Mar; 64(6):1135-43. PubMed ID: 2004420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae.
    BarillĂ  D; Lee BA; Proudfoot NJ
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):445-50. PubMed ID: 11149954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae.
    Lindstrom DL; Hartzog GA
    Genetics; 2001 Oct; 159(2):487-97. PubMed ID: 11606527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID.
    Koleske AJ; Buratowski S; Nonet M; Young RA
    Cell; 1992 May; 69(5):883-94. PubMed ID: 1591782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation.
    Patturajan M; Conrad NK; Bregman DB; Corden JL
    J Biol Chem; 1999 Sep; 274(39):27823-8. PubMed ID: 10488128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA polymerase II carboxy-terminal domain contributes to the response to multiple acidic activators in vitro.
    Liao SM; Taylor IC; Kingston RE; Young RA
    Genes Dev; 1991 Dec; 5(12B):2431-40. PubMed ID: 1752437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit.
    Zhang J; Corden JL
    J Biol Chem; 1991 Feb; 266(4):2290-6. PubMed ID: 1899239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.
    Liu P; Greenleaf AL; Stiller JW
    Mol Biol Evol; 2008 Apr; 25(4):719-27. PubMed ID: 18209193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes.
    Pei Y; Hausmann S; Ho CK; Schwer B; Shuman S
    J Biol Chem; 2001 Jul; 276(30):28075-82. PubMed ID: 11387325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae.
    Kobor MS; Simon LD; Omichinski J; Zhong G; Archambault J; Greenblatt J
    Mol Cell Biol; 2000 Oct; 20(20):7438-49. PubMed ID: 11003641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II.
    Chang A; Cheang S; Espanel X; Sudol M
    J Biol Chem; 2000 Jul; 275(27):20562-71. PubMed ID: 10781604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain.
    Liu P; Kenney JM; Stiller JW; Greenleaf AL
    Mol Biol Evol; 2010 Nov; 27(11):2628-41. PubMed ID: 20558594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes.
    Meisels E; Gileadi O; Corden JL
    J Biol Chem; 1995 Dec; 270(52):31255-61. PubMed ID: 8537392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.