These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7498915)

  • 1. Magnetically induced currents in the canine heart: a finite element study.
    Ragan PM; Wang W; Eisenberg SR
    IEEE Trans Biomed Eng; 1995 Nov; 42(11):1110-6. PubMed ID: 7498915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element models of thoracic conductive anatomy: sensitivity to changes in inhomogeneity and anisotropy.
    Karlon WJ; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1010-7. PubMed ID: 8001989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies.
    Glidewell ME; Ng KT
    IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of paddle placement and size on defibrillation current distribution: a three-dimensional finite element model.
    Karlon WJ; Eisenberg SR; Lehr JL
    IEEE Trans Biomed Eng; 1993 Mar; 40(3):246-55. PubMed ID: 8335328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of myocardial anisotropy on the torso current flow patterns, potentials and magnetic fields.
    Ramon C; Wang Y; Haueisen J; Schimpf P; Jaruvatanadilok S; Ishimaru A
    Phys Med Biol; 2000 May; 45(5):1141-50. PubMed ID: 10843096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional uniform grid modeling of electrical defibrillation on a data parallel computer.
    Gao S; Nadeem A; Deale OC; Lerman BB; Ng KT
    Comput Biol Med; 1995 May; 25(3):335-48. PubMed ID: 7554850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional finite element model of human transthoracic defibrillation: paddle placement and size.
    Camacho MA; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):572-8. PubMed ID: 7790013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.
    Miranda PC; Hallett M; Basser PJ
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic fields from simulated cardiac action currents.
    Barach JP; Wikswo JP
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):969-74. PubMed ID: 7959804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of magnetically-induced E-fields on cardiac electric activity during MRI: A modeling study.
    Liu F; Xia L; Crozier S
    Magn Reson Med; 2003 Dec; 50(6):1180-8. PubMed ID: 14648565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimizing EIT image artefacts from mesh variability in finite element models.
    Adler A; Lionheart WR
    Physiol Meas; 2011 Jul; 32(7):823-34. PubMed ID: 21646712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of the importance of myocardial anisotropy in finite-element modeling of the heart: methodology and application to the estimation of defibrillation efficacy.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1377-89. PubMed ID: 11759919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model.
    Jorgenson DB; Haynor DR; Bardy GH; Kim Y
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):172-84. PubMed ID: 7868145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric and magnetic fields from two-dimensional anisotropic bisyncytia.
    Sepulveda NG; Wikswo JP
    Biophys J; 1987 Apr; 51(4):557-68. PubMed ID: 3580484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of magnetoacoustic signal generation with magnetic induction based on inhomogeneous conductivity anisotropy.
    Li X; Hu S; Li L; Zhu S
    Comput Math Methods Med; 2013; 2013():161357. PubMed ID: 23606896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance tomography: computational analysis based on finite element models of a cylinder and a human thorax.
    Shahidi AV; Guardo R; Savard P
    Ann Biomed Eng; 1995; 23(1):61-9. PubMed ID: 7762883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical defibrillation optimization: an automated, iterative parallel finite-element approach.
    Hutchinson SA; Ng KT; Shadid JN; Nadeem A
    IEEE Trans Biomed Eng; 1997 Apr; 44(4):278-89. PubMed ID: 9125810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed model of the thorax as a volume conductor based on the visible human man data.
    Kauppinen P; Hyttinen J; Heinonen T; Malmivuo J
    J Med Eng Technol; 1998; 22(3):126-33. PubMed ID: 9667039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.