These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7499588)

  • 1. The role of sensory information in the control of rhythmic open-close movements in humans.
    van der Bilt A; Weijnen FG; Ottenhoff FA; van der Glas HW; Bosman F
    J Dent Res; 1995 Oct; 74(10):1658-64. PubMed ID: 7499588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripherally induced and anticipating elevator muscle activity during simulated chewing in humans.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    J Neurophysiol; 1992 Jan; 67(1):75-83. PubMed ID: 1552324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of elevator muscle activity during simulated chewing with varying food resistance in humans.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    J Neurophysiol; 1992 Sep; 68(3):933-44. PubMed ID: 1432058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    Exp Brain Res; 1993; 96(3):501-12. PubMed ID: 8299751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed-dependent control of cyclic open-close movements of the human jaw with an external force counteracting closing.
    Abbink JH; van der Bilt A; Bosman F; van der Glas HW
    J Dent Res; 1999 Apr; 78(4):878-86. PubMed ID: 10326732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open-close movements in humans.
    van der Bilt A; Ottenhoff FA; van der Glas HW; Bosman F; Abbink JH
    J Dent Res; 1997 Apr; 76(4):839-47. PubMed ID: 9126179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of jaw-opener and jaw-closer muscle activity in humans to overcome an external force counteracting jaw movement.
    Abbink JH; van der Bilt A; Bosman F; van der Glas HW
    Exp Brain Res; 1998 Jan; 118(2):269-78. PubMed ID: 9547097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exteroceptive reflexes in jaw-closing muscle EMG during rhythmic jaw closing and clenching in man.
    Hück NL; Abbink JH; Hoogenkamp E; van der Bilt A; van der Glas HW
    Exp Brain Res; 2005 Apr; 162(2):230-8. PubMed ID: 15791466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal profile and amplitude of human masseter muscle activity is adapted to food properties during individual chewing cycles.
    Grigoriadis A; Johansson RS; Trulsson M
    J Oral Rehabil; 2014 May; 41(5):367-73. PubMed ID: 24612326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Masticatory muscles. Part VII. Masticatory muscles and mastication. How do we get small pieces of food?].
    van der Bilt A; Bosman F; van der Glas HW
    Ned Tijdschr Tandheelkd; 1998 Jan; 105(1):4-6. PubMed ID: 11928401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of dynamic bite force during mastication.
    Shimada A; Yamabe Y; Torisu T; Baad-Hansen L; Murata H; Svensson P
    J Oral Rehabil; 2012 May; 39(5):349-56. PubMed ID: 22288929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between jaw elevator muscle surface electromyogram and simulated food resistance during dynamic condition in humans.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F; Abbink JH
    J Oral Rehabil; 1996 Apr; 23(4):270-9. PubMed ID: 8730275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in jaw muscle activity and the physical properties of foods with different textures during chewing behaviors.
    Iguchi H; Magara J; Nakamura Y; Tsujimura T; Ito K; Inoue M
    Physiol Behav; 2015 Dec; 152(Pt A):217-24. PubMed ID: 26440319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between food mixing ability and electromyographic activity of jaw-closing muscles during chewing of a wax cube.
    Fueki K; Sugiura T; Yoshida E; Igarashi Y
    J Oral Rehabil; 2008 May; 35(5):345-52. PubMed ID: 18405270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods.
    Peyron MA; Lassauzay C; Woda A
    Exp Brain Res; 2002 Jan; 142(1):41-51. PubMed ID: 11797083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suprahyoid biomechanics and head posture. An electromyographic, videofluorographic and dynamographic study of hyo-mandibular function in man.
    Winnberg A
    Swed Dent J Suppl; 1987; 46():1-173. PubMed ID: 3475790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bruxing patterns in children compared to intercuspal clenching and chewing as assessed with dental models, electromyography, and incisor jaw tracing: preliminary study.
    Negoro T; Briggs J; Plesh O; Nielsen I; McNeill C; Miller AJ
    ASDC J Dent Child; 1998; 65(6):449-58, 438. PubMed ID: 9883319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jaw movement tremor as a predictor of chewing performance.
    Wilding RJ; Shaikh M
    J Orofac Pain; 1997; 11(2):101-14. PubMed ID: 10332316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indications for jaw gape-related control of relative muscle activation in sequent chewing strokes.
    Pröschel PA; Morneburg TR
    J Oral Rehabil; 2010 Mar; 37(3):178-84. PubMed ID: 19968765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computer-controlled experimental set-up enabling the quantification of motor performance in man, applied to mastication.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    J Oral Rehabil; 1994 Jul; 21(4):397-410. PubMed ID: 7965351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.