BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7499849)

  • 1. Evaluation of loss and change of specificity resulting from random mutagenesis of an antibody VH region.
    Casson LP; Manser T
    J Immunol; 1995 Dec; 155(12):5647-54. PubMed ID: 7499849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural requirements for a specificity switch and for maintenance of affinity using mutational analysis of a phage-displayed anti-arsonate antibody of Fab heavy chain first complementarity-determining region.
    Wong YW; Gill DS; Parhami-Seren B; Short MK; Sompuram SR; Margolies MN
    J Immunol; 1998 Jun; 160(12):5990-7. PubMed ID: 9637513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single engineered amino acid substitution changes antibody fine specificity.
    Kussie PH; Parhami-Seren B; Wysocki LJ; Margolies MN
    J Immunol; 1994 Jan; 152(1):146-52. PubMed ID: 8254187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of heavy chain junctional amino acid diversity to antibody affinity among p-azophenylarsonate-specific antibodies.
    Parhami-Seren B; Margolies MN
    J Immunol; 1996 Sep; 157(5):2066-72. PubMed ID: 8757328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of H chain-associated idiotopes of anti-p-azophenylarsonate monoclonal antibodies.
    Parhami-Seren B; Sharon J; Margolies MN
    J Immunol; 1990 Jun; 144(11):4426-33. PubMed ID: 2111347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amino acid residues at the VH-D-JH junctions affect the affinity of anti-p-azophenylarsonate antibodies.
    Parhami-Seren B; Wysocki L; Margolies MN
    J Immunol; 1989 Dec; 143(12):4090-7. PubMed ID: 2512349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustered H chain somatic mutations shared by anti-p-azophenylarsonate antibodies confer enhanced affinity and ablate the cross-reactive idiotype.
    Parhami-Seren B; Wysocki LJ; Margolies MN; Sharon J
    J Immunol; 1990 Oct; 145(7):2340-6. PubMed ID: 2118935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy chain variable region, light chain variable region, and heavy chain CDR3 influences on the mono- and polyreactivity and on the affinity of human monoclonal rheumatoid factors.
    Crouzier R; Martin T; Pasquali JL
    J Immunol; 1995 May; 154(9):4526-35. PubMed ID: 7722307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity maturation of phage display antibody populations using ribosome display.
    Groves M; Lane S; Douthwaite J; Lowne D; Rees DG; Edwards B; Jackson RH
    J Immunol Methods; 2006 Jun; 313(1-2):129-39. PubMed ID: 16730741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity maturation of a V(H)H by mutational hotspot randomization.
    Yau KY; Dubuc G; Li S; Hirama T; Mackenzie CR; Jermutus L; Hall JC; Tanha J
    J Immunol Methods; 2005 Feb; 297(1-2):213-24. PubMed ID: 15777944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen.
    Casson LP; Manser T
    J Exp Med; 1995 Sep; 182(3):743-50. PubMed ID: 7650481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving antibody affinity by mimicking somatic hypermutation in vitro.
    Chowdhury PS; Pastan I
    Nat Biotechnol; 1999 Jun; 17(6):568-72. PubMed ID: 10385321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of anti-p53 Fab fragments from individuals with colorectal cancer using phage display.
    Coomber DW; Hawkins NJ; Clark MA; Ward RL
    J Immunol; 1999 Aug; 163(4):2276-83. PubMed ID: 10438972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an Ig VH idiotope that results in specific homophilic binding and increased avidity for antigen.
    Yan X; Evans SV; Kaminki MJ; Gillies SD; Reisfeld RA; Houghton AN; Chapman PB
    J Immunol; 1996 Aug; 157(4):1582-8. PubMed ID: 8759742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance of single, but not multiple, amino acid replacements in antibody VH CDR 2: a means of minimizing B cell wastage from somatic hypermutation?
    Brown M; Rittenburg MB; Chen C; Roberts VA
    J Immunol; 1996 May; 156(9):3285-91. PubMed ID: 8617951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of scFv fragment reactivity with target antigens in binding assays following mixing with anti-tag monoclonal antibodies.
    Wang X; Campoli M; Ko E; Luo W; Ferrone S
    J Immunol Methods; 2004 Nov; 294(1-2):23-35. PubMed ID: 15604013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis.
    Yelton DE; Rosok MJ; Cruz G; Cosand WL; Bajorath J; Hellström I; Hellström KE; Huse WD; Glaser SM
    J Immunol; 1995 Aug; 155(4):1994-2004. PubMed ID: 7636250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent somatic mutations in mouse antibodies to p-azophenylarsonate increase affinity for hapten.
    Sharon J; Gefter ML; Wysocki LJ; Margolies MN
    J Immunol; 1989 Jan; 142(2):596-601. PubMed ID: 2911012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of phage surface expression to analyze regions of human V4-34(VH4-21)-encoded IgG autoantibody required for recognition of DNA: no involvement of the 9G4 idiotope.
    Mockridge CI; Chapman CJ; Spellerberg MB; Isenberg DA; Stevenson FK
    J Immunol; 1996 Sep; 157(6):2449-54. PubMed ID: 8805644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guided selection of a pan carcinoma specific antibody reveals similar binding characteristics yet structural divergence between the original murine antibody and its human equivalent.
    Beiboer SH; Reurs A; Roovers RC; Arends JW; Whitelegg NR; Rees AR; Hoogenboom HR
    J Mol Biol; 2000 Feb; 296(3):833-49. PubMed ID: 10677285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.