BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7500207)

  • 1. Rod transduction parameters from the a wave of local receptor populations.
    Nusinowitz S; Hood DC; Birch DG
    J Opt Soc Am A Opt Image Sci Vis; 1995 Oct; 12(10):2259-66. PubMed ID: 7500207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rod and cone contributions to the a-wave of the electroretinogram of the macaque.
    Robson JG; Saszik SM; Ahmed J; Frishman LJ
    J Physiol; 2003 Mar; 547(Pt 2):509-30. PubMed ID: 12562933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave.
    Hood DC; Birch DG
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):2948-61. PubMed ID: 8206712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of three techniques to estimate the human dark-adapted cone electroretinogram.
    Verdon WA; Schneck ME; Haegerstrom-Portnoy G
    Vision Res; 2003 Sep; 43(19):2089-99. PubMed ID: 12842161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of cone responses to rat electroretinograms.
    Nixon PJ; Bui BV; Armitage JA; Vingrys AJ
    Clin Exp Ophthalmol; 2001 Jun; 29(3):193-6. PubMed ID: 11446467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age.
    Cideciyan AV; Jacobson SG
    Vision Res; 1996 Aug; 36(16):2609-21. PubMed ID: 8917821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.
    Birch DG; Hood DC; Nusinowitz S; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of electroretinogram and rod phototransduction response in human infants.
    Breton ME; Quinn GE; Schueller AW
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1588-602. PubMed ID: 7601640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythms of rod-cone dominance in the Japanese quail retina.
    Manglapus MK; Uchiyama H; Buelow NF; Barlow RB
    J Neurosci; 1998 Jun; 18(12):4775-84. PubMed ID: 9614251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: applications and methods.
    Hood DC; Birch DG
    Doc Ophthalmol; 1996-1997; 92(4):253-67. PubMed ID: 9476593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The a-wave of the human electroretinogram recorded with a minimally invasive technique.
    Smith NP; Lamb TD
    Vision Res; 1997 Nov; 37(21):2943-52. PubMed ID: 9425511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development.
    Rosa JM; Morrie RD; Baertsch HC; Feller MB
    J Neurosci; 2016 Sep; 36(37):9683-95. PubMed ID: 27629718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal analysis of electroretinographic responses in fishes with rod-dominated and mixed rod-cone retina.
    Milosević M; Visnjić-Jeftić Z; Damjanović I; Nikcević M; Andjus P; Gacić Z
    Gen Physiol Biophys; 2009 Sep; 28(3):276-82. PubMed ID: 20037193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course of the flash response of dark- and light-adapted human rod photoreceptors derived from the electroretinogram.
    Friedburg C; Thomas MM; Lamb TD
    J Physiol; 2001 Jul; 534(Pt 1):217-42. PubMed ID: 11433004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the cone ERG in infants.
    Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3458-62. PubMed ID: 16123452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ERG responses to light stimuli of melanopsin-expressing retinal ganglion cells that are independent of rods and cones.
    Fukuda Y; Tsujimura S; Higuchi S; Yasukouchi A; Morita T
    Neurosci Lett; 2010 Aug; 479(3):282-6. PubMed ID: 20641166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites of disease action in a retinal dystrophy with supernormal and delayed rod electroretinogram b-waves.
    Hood DC; Cideciyan AV; Halevy DA; Jacobson SG
    Vision Res; 1996 Mar; 36(6):889-901. PubMed ID: 8736222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cone electroretinogram in retinopathy of prematurity.
    Fulton AB; Hansen RM; Moskowitz A
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):814-9. PubMed ID: 18235032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.