These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

966 related articles for article (PubMed ID: 7500347)

  • 41. Characterization of the denaturation of human alpha-lactalbumin in urea by molecular dynamics simulations.
    Smith LJ; Jones RM; van Gunsteren WF
    Proteins; 2005 Feb; 58(2):439-49. PubMed ID: 15558602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid collapse and slow structural reorganisation during the refolding of bovine alpha-lactalbumin.
    Forge V; Wijesinha RT; Balbach J; Brew K; Robinson CV; Redfield C; Dobson CM
    J Mol Biol; 1999 May; 288(4):673-88. PubMed ID: 10329172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organization and dynamics of tryptophans in the molten globule state of bovine alpha-lactalbumin utilizing wavelength-selective fluorescence approach: comparisons with native and denatured states.
    Chaudhuri A; Haldar S; Chattopadhyay A
    Biochem Biophys Res Commun; 2010 Apr; 394(4):1082-6. PubMed ID: 20346348
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stepwise proteolytic removal of the beta subdomain in alpha-lactalbumin. The protein remains folded and can form the molten globule in acid solution.
    Polverino de Laureto P; Vinante D; Scaramella E; Frare E; Fontana A
    Eur J Biochem; 2001 Aug; 268(15):4324-33. PubMed ID: 11488928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Native-like tertiary structure formation in the alpha-domain of a hen lysozyme two-disulfide variant.
    Tachibana H; Oka T; Akasaka K
    J Mol Biol; 2001 Nov; 314(2):311-20. PubMed ID: 11718564
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A protein dissection study demonstrates that two specific hydrophobic clusters play a key role in stabilizing the core structure of the molten globule state of human alpha-lactalbumin.
    Demarest SJ; Horng JC; Raleigh DP
    Proteins; 2001 Feb; 42(2):237-42. PubMed ID: 11119648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beta-sheet and associated turn signatures in vibrational Raman optical activity spectra of proteins.
    Wen ZQ; Hecht L; Barron LD
    Protein Sci; 1994 Mar; 3(3):435-9. PubMed ID: 7912598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates.
    D'Silva PR; Lala AK
    Protein Sci; 1999 May; 8(5):1099-103. PubMed ID: 10338020
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data.
    Zhu F; Kapitan J; Tranter GE; Pudney PD; Isaacs NW; Hecht L; Barron LD
    Proteins; 2008 Feb; 70(3):823-33. PubMed ID: 17729278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The molten globule protein conformation probed by disulphide bonds.
    Ewbank JJ; Creighton TE
    Nature; 1991 Apr; 350(6318):518-20. PubMed ID: 1901628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FTIR study on heat-induced and pressure-assisted cold-induced changes in structure of bovine alpha-lactalbumin: stabilizing role of calcium ion.
    Dzwolak W; Kato M; Shimizu A; Taniguchi Y
    Biopolymers; 2001; 62(1):29-39. PubMed ID: 11135190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. pH and temperature-induced molten globule-like denatured states of equinatoxin II: a study by UV-melting, DSC, far- and near-UV CD spectroscopy, and ANS fluorescence.
    Poklar N; Lah J; Salobir M; Macek P; Vesnaver G
    Biochemistry; 1997 Nov; 36(47):14345-52. PubMed ID: 9398152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing subtle differences in the hydrogen exchange behavior of variants of the human alpha-lactalbumin molten globule using mass spectrometry.
    Last AM; Schulman BA; Robinson CV; Redfield C
    J Mol Biol; 2001 Aug; 311(4):909-19. PubMed ID: 11518539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and dynamics of the alpha-lactalbumin molten globule: fluorescence studies using proteins containing a single tryptophan residue.
    Chakraborty S; Ittah V; Bai P; Luo L; Haas E; Peng Z
    Biochemistry; 2001 Jun; 40(24):7228-38. PubMed ID: 11401570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium binding peptides from alpha-lactalbumin: implications for protein folding and stability.
    Kuhlman B; Boice JA; Wu WJ; Fairman R; Raleigh DP
    Biochemistry; 1997 Apr; 36(15):4607-15. PubMed ID: 9109670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural energetics of the molten globule state.
    Haynie DT; Freire E
    Proteins; 1993 Jun; 16(2):115-40. PubMed ID: 8332604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural basis for the appearance of a molten globule state in chimeric molecules derived from lysozyme and alpha-lactalbumin.
    Joniau M; Haezebrouck P; Noyelle K; Van Dael H
    Proteins; 2001 Jul; 44(1):1-11. PubMed ID: 11354000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of hydrostatic pressure on unfolding of alpha-lactalbumin: volumetric equivalence of the molten globule and unfolded state.
    Kobashigawa Y; Sakurai M; Nitta K
    Protein Sci; 1999 Dec; 8(12):2765-72. PubMed ID: 10631994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molten globule structures in milk proteins: implications for potential new structure-function relationships.
    Farrell HM; Qi PX; Brown EM; Cooke PH; Tunick MH; Wickham ED; Unruh JJ
    J Dairy Sci; 2002 Mar; 85(3):459-71. PubMed ID: 11949847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Secondary structure of proteins from circular dichroism spectra. V. Secondary structure of proteins in a "molten globule" state].
    Bolotina IA
    Mol Biol (Mosk); 1987; 21(6):1625-35. PubMed ID: 3128730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.