These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7501135)

  • 1. Dopamine release in the nucleus accumbens: the perspective from aberrations of consciousness in schizophrenia.
    Gray JA
    Neuropsychologia; 1995 Sep; 33(9):1143-53. PubMed ID: 7501135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of mesolimbic dopaminergic and retrohippocampal afferents to the nucleus accumbens in latent inhibition: implications for schizophrenia.
    Gray JA; Joseph MH; Hemsley DR; Young AM; Warburton EC; Boulenguez P; Grigoryan GA; Peters SL; Rawlins JN; Taib CT
    Behav Brain Res; 1995 Nov; 71(1-2):19-31. PubMed ID: 8747172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating schizophrenia.
    Gray JA
    Schizophr Bull; 1998; 24(2):249-66. PubMed ID: 9613624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On biology, phenomenology, and pharmacology in schizophrenia.
    Freudenreich O
    Am J Psychiatry; 2004 Feb; 161(2):376; author reply 377-8. PubMed ID: 14754799
    [No Abstract]   [Full Text] [Related]  

  • 5. A possible role of hippocampal dysfunction in schizophrenic symptomatology.
    Luchins DJ
    Biol Psychiatry; 1990 Jul; 28(2):87-91. PubMed ID: 2378923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential involvement of dopamine in the shell and core of the nucleus accumbens in the expression of latent inhibition to an aversively conditioned stimulus.
    Murphy CA; Pezze M; Feldon J; Heidbreder C
    Neuroscience; 2000; 97(3):469-77. PubMed ID: 10828530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased Connectivity Between the Nucleus Accumbens and the Default Mode Network in Patients With Schizophrenia During Cigarette Cravings.
    Potvin S; Dugré JR; Fahim C; Dumais A
    J Dual Diagn; 2019; 15(1):8-15. PubMed ID: 30445892
    [No Abstract]   [Full Text] [Related]  

  • 8. Hippocampal and cortical sensory gating in rats: effects of quinpirole microinjections in nucleus accumbens core and shell.
    de Bruin NM; Ellenbroek BA; van Luijtelaar EL; Cools AR; Stevens KE
    Neuroscience; 2001; 105(1):169-80. PubMed ID: 11483310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia.
    Mikell CB; McKhann GM; Segal S; McGovern RA; Wallenstein MB; Moore H
    Stereotact Funct Neurosurg; 2009; 87(4):256-65. PubMed ID: 19556835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latent inhibition in rats is abolished by NMDA-induced neuronal loss in the retrohippocampal region, but this lesion effect can be prevented by systemic haloperidol treatment.
    Yee BK; Feldon J; Rawlins JN
    Behav Neurosci; 1995 Apr; 109(2):227-40. PubMed ID: 7619313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of latent inhibition in the rat by altered dopamine transmission in the nucleus accumbens at the time of conditioning.
    Joseph MH; Peters SL; Moran PM; Grigoryan GA; Young AM; Gray JA
    Neuroscience; 2000; 101(4):921-30. PubMed ID: 11113341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kainic acid decreases hippocampal neuronal number and increases dopamine receptor binding in the nucleus accumbens: an animal model of schizophrenia.
    Bardgett ME; Jackson JL; Taylor GT; Csernansky JG
    Behav Brain Res; 1995 Oct; 70(2):153-64. PubMed ID: 8561906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dreaming and schizophrenia: a common neurobiological background?].
    Gottesmann C
    Med Sci (Paris); 2006 Feb; 22(2):201-5. PubMed ID: 16457764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consciousness, awareness of insight and neural mechanisms of schizophrenia.
    Touskova T; Bob P
    Rev Neurosci; 2015; 26(3):295-304. PubMed ID: 25741942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective deficits in spatial working memory in the neonatal ventral hippocampal lesion rat model of schizophrenia.
    Brady AM; Saul RD; Wiest MK
    Neuropharmacology; 2010 Dec; 59(7-8):605-11. PubMed ID: 20732335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor gating and schizophrenia. Human and animal model studies.
    Braff DL; Geyer MA
    Arch Gen Psychiatry; 1990 Feb; 47(2):181-8. PubMed ID: 2405807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limbic-cortical neuronal damage and the pathophysiology of schizophrenia.
    Csernansky JG; Bardgett ME
    Schizophr Bull; 1998; 24(2):231-48. PubMed ID: 9613623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopaminergic circuitry and risk/reward decision making: implications for schizophrenia.
    Stopper CM; Floresco SB
    Schizophr Bull; 2015 Jan; 41(1):9-14. PubMed ID: 25406370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine release in the nucleus accumbens and latent inhibition in the rat following microinjections of a 5-HT1B agonist into the dorsal subiculum: implications for schizophrenia.
    Boulenguez P; Peters SL; Mitchell SN; Chauveau J; Gray JA; Joseph MH
    J Psychopharmacol; 1998; 12(3):258-67. PubMed ID: 10958252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schizophrenia, dissociation, and consciousness.
    Bob P; Mashour GA
    Conscious Cogn; 2011 Dec; 20(4):1042-9. PubMed ID: 21602061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.