These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7501696)

  • 21. Enzymes cooperating in the hydrolyzing process of benzoylcholines: subcellular and inter-tissue comparison.
    Pauliková I; Sisková K
    Pharmazie; 2009 Jun; 64(6):398-402. PubMed ID: 19618678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential metabolism of midazolam in mouse liver and intestine microsomes: a comparison of cytochrome P450 activity and expression.
    Perloff MD; Von Moltke LL; Greenblatt DJ
    Xenobiotica; 2003 Apr; 33(4):365-77. PubMed ID: 12745872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytochrome P-450-dependent bioactivation of 1,1-dichloroethylene to a reactive epoxide in human lung and liver microsomes.
    Dowsley TF; Reid K; Petsikas D; Ulreich JB; Fisher RL; Forkert PG
    J Pharmacol Exp Ther; 1999 May; 289(2):641-8. PubMed ID: 10215634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inter-species variability of haplamine metabolism and identification of its phase I metabolites from liver microsomes.
    Ea S; Bun SS; Aubert C; Akhmedjanova V; Ollivier E; Siv C; Bun H
    Planta Med; 2006 Nov; 72(14):1273-8. PubMed ID: 16983601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microsomal C-nitroso reductase activity.
    Bélanger PM; Grech-Bélanger O
    Biochem Biophys Res Commun; 1978 Jul; 83(1):321-6. PubMed ID: 697820
    [No Abstract]   [Full Text] [Related]  

  • 26. Renal tumorigenicity of 1,1-dichloroethene in mice: the role of male-specific expression of cytochrome P450 2E1 in the renal bioactivation of 1,1-dichloroethene.
    Speerschneider P; Dekant W
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):48-56. PubMed ID: 7839370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inter-individual variability in esterases in human liver.
    Jewell C; Bennett P; Mutch E; Ackermann C; Williams FM
    Biochem Pharmacol; 2007 Sep; 74(6):932-9. PubMed ID: 17651701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic investigations of liver microsomal esterases with oxazepam esters.
    Maksay G; Tegyey Z; Otvös L
    Hoppe Seylers Z Physiol Chem; 1978 Aug; 359(8):879-86. PubMed ID: 711150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfoxide reduction: organ-dependence and species variability of biotransformational sulfoxide reduction of oxyprothepine-8-sulfoxide in the cytoplasma.
    Pauliková I; Helia O
    Pharmazie; 1994 Jul; 49(7):531-2. PubMed ID: 7915423
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization of deltamethrin metabolism by rat plasma and liver microsomes.
    Anand SS; Bruckner JV; Haines WT; Muralidhara S; Fisher JW; Padilla S
    Toxicol Appl Pharmacol; 2006 Apr; 212(2):156-66. PubMed ID: 16169030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutathione conjugation of perchloroethylene in rats and mice in vitro: sex-, species-, and tissue-dependent differences.
    Lash LH; Qian W; Putt DA; Desai K; Elfarra AA; Sicuri AR; Parker JC
    Toxicol Appl Pharmacol; 1998 May; 150(1):49-57. PubMed ID: 9630452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro metabolism of 4-vinylcyclohexene in rat and mouse liver, lung, and ovary.
    Keller DA; Carpenter SC; Cagen SZ; Reitman FA
    Toxicol Appl Pharmacol; 1997 May; 144(1):36-44. PubMed ID: 9169067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Species differences for stereoselective hydrolysis of propranolol prodrugs in plasma and liver.
    Yoshigae Y; Imai T; Horita A; Otagiri M
    Chirality; 1997; 9(7):661-6. PubMed ID: 9366026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Comparison in rats and mice of the in vitro hydrolytic power of the liver with respect to procaine].
    Hazard R; Larno-Vacheron S
    C R Seances Soc Biol Fil; 1967 Jul; 161(2):251-4. PubMed ID: 4229117
    [No Abstract]   [Full Text] [Related]  

  • 35. Species differences in the metabolism of di(2-ethylhexyl) phthalate (DEHP) in several organs of mice, rats, and marmosets.
    Ito Y; Yokota H; Wang R; Yamanoshita O; Ichihara G; Wang H; Kurata Y; Takagi K; Nakajima T
    Arch Toxicol; 2005 Mar; 79(3):147-54. PubMed ID: 15798888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative metabolism of the nonsteroidal antiinflammatory drug, aceclofenac, in the rat, monkey, and human.
    Bort R; Ponsoda X; Carrasco E; Gómez-Lechón MJ; Castell JV
    Drug Metab Dispos; 1996 Sep; 24(9):969-75. PubMed ID: 8886606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The In vitro hepatic metabolism of quinine in mice, rats and dogs: comparison with human liver microsomes.
    Zhao XJ; Ishizaki T
    J Pharmacol Exp Ther; 1997 Dec; 283(3):1168-76. PubMed ID: 9399990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Structure of the active center of microsomal carboxyl esteases from porcine kidney and liver].
    Heymann E; Krisch K; Pahlich E
    Hoppe Seylers Z Physiol Chem; 1970 Aug; 351(8):931-42. PubMed ID: 4916037
    [No Abstract]   [Full Text] [Related]  

  • 39. In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans.
    Lang D; Freudenberger C; Weinz C
    Drug Metab Dispos; 2009 May; 37(5):1046-55. PubMed ID: 19196846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cinnamyl anthranilate causes coinduction of hepatic microsomal and peroxisomal enzymes in mouse but not rat.
    Viswalingam A; Caldwell J
    Toxicol Appl Pharmacol; 1997 Feb; 142(2):338-47. PubMed ID: 9070357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.