BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7502603)

  • 1. Immunocytochemical localization of GABAA receptors in rat somatosensory cortex and effects of tactile deprivation.
    Land PW; de Blas AL; Reddy N
    Somatosens Mot Res; 1995; 12(2):127-41. PubMed ID: 7502603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experience-dependent alteration of synaptic zinc in rat somatosensory barrel cortex.
    Land PW; Akhtar ND
    Somatosens Mot Res; 1999; 16(2):139-50. PubMed ID: 10449062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experience-dependent plasticity of zinc-containing cortical circuits during a critical period of postnatal development.
    Land PW; Shamalla-Hannah L
    J Comp Neurol; 2002 May; 447(1):43-56. PubMed ID: 11967894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation.
    Akhtar ND; Land PW
    J Comp Neurol; 1991 May; 307(2):200-13. PubMed ID: 1713230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of whisker trimming on GABA(A) receptor binding in the barrel cortex of developing and adult rats.
    Fuchs JL; Salazar E
    J Comp Neurol; 1998 Jun; 395(2):209-16. PubMed ID: 9603373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal whisker trimming produces greater effects in nondeprived than deprived thalamic barreloids.
    Simons DJ; Land PW
    J Neurophysiol; 1994 Sep; 72(3):1434-7. PubMed ID: 7807225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood.
    Hendry SH; Huntsman MM; Viñuela A; Möhler H; de Blas AL; Jones EG
    J Neurosci; 1994 Apr; 14(4):2383-401. PubMed ID: 8158275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of NADPH-d activity in the rat's barrel-field cortex and its relationship to cytochrome oxidase activity.
    Vercelli A; Repici M; Biasiol S; Jhaveri S
    Exp Neurol; 1999 Apr; 156(2):294-315. PubMed ID: 10328937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of GABAergic inhibition reveals reordered cortical somatotopic maps in rats that sustained neonatal forelimb removal.
    Lane RD; Killackey HP; Rhoades RW
    J Neurophysiol; 1997 May; 77(5):2723-35. PubMed ID: 9163388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale plasticity in barrel cortex following repeated whisker trimming in young adult hamsters.
    Maier DL; Grieb GM; Stelzner DJ; McCasland JS
    Exp Neurol; 2003 Dec; 184(2):737-45. PubMed ID: 14769365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective expression and rapid regulation of GABAA receptor subunits in geniculocortical neurons of macaque dorsal lateral geniculate nucleus.
    Hendry SH; Miller KL
    Vis Neurosci; 1996; 13(2):223-35. PubMed ID: 8737273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex.
    Foeller E; Celikel T; Feldman DE
    J Neurophysiol; 2005 Dec; 94(6):4387-400. PubMed ID: 16162832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unilateral whisker trimming in newborn rats alters neuronal coincident discharge among mature barrel cortex neurons.
    Ghoshal A; Lustig B; Popescu M; Ebner F; Pouget P
    J Neurophysiol; 2014 Oct; 112(8):1925-35. PubMed ID: 25057142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex.
    Hendry SH; Fuchs J; deBlas AL; Jones EG
    J Neurosci; 1990 Jul; 10(7):2438-50. PubMed ID: 2165524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study.
    Durham D; Woolsey TA
    J Comp Neurol; 1985 May; 235(1):97-110. PubMed ID: 2985659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system.
    Lee LJ; Chen WJ; Chuang YW; Wang YC
    Exp Neurol; 2009 Oct; 219(2):524-32. PubMed ID: 19619534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity in the barrel cortex of the adult mouse: effects of peripheral deprivation on GAD-immunoreactivity.
    Welker E; Soriano E; Van der Loos H
    Exp Brain Res; 1989; 74(3):441-52. PubMed ID: 2707320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
    Huang W; Armstrong-James M; Rema V; Diamond ME; Ebner FF
    J Neurophysiol; 1998 Dec; 80(6):3261-71. PubMed ID: 9862920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex.
    Salin PA; Prince DA
    J Neurophysiol; 1996 Apr; 75(4):1589-600. PubMed ID: 8727398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons.
    Shoykhet M; Land PW; Simons DJ
    J Neurophysiol; 2005 Dec; 94(6):3987-95. PubMed ID: 16093330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.