These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7503301)

  • 1. Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis.
    Hou PC; Burggren WW
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1126-32. PubMed ID: 7503301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood pressures and heart rate during larval development in the anuran amphibian Xenopus laevis.
    Hou PC; Burggren WW
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1120-5. PubMed ID: 7503300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac output in Xenopus laevis tadpoles during development and in response to an adenosine agonist.
    Tang YY; Rovainen CM
    Am J Physiol; 1996 May; 270(5 Pt 2):R997-1004. PubMed ID: 8928932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of hypoxic modulation of cardiac performance and its allometry in the African clawed frog Xenopus laevis.
    Pan TC; Burggren WW
    J Comp Physiol B; 2013 Jan; 183(1):123-33. PubMed ID: 22752075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of cardiovascular responses to hypoxia in larvae of the frog Xenopus laevis.
    Fritsche R; Burggren W
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R912-7. PubMed ID: 8897981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of adrenergic and cholinergic cardiac control in larvae of the African clawed frog Xenopus laevis.
    Jacobsson A; Fritsche R
    Physiol Biochem Zool; 1999; 72(3):328-38. PubMed ID: 10222327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M; Plank C; Meissner U; Eberle KP; Weyand M; Cesnjevar R; Dötsch J; Rascher W
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ontogeny of cardio-respiratory function under chronically altered gas compositions in Xenopus laevis.
    Territo PR; Altimiras J
    Respir Physiol; 1998 Mar; 111(3):311-23. PubMed ID: 9628236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adult-type splenocytes of Xenopus induce apoptosis of histocompatible larval tail cells in vitro.
    Izutsu Y; Yoshizato K; Tochinai S
    Differentiation; 1996 Sep; 60(5):277-86. PubMed ID: 8855371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta 2-adrenergic vascular control in hemorrhage and its influence on cardiac performance.
    Gustafsson D; Lundvall J
    Am J Physiol; 1984 Mar; 246(3 Pt 2):H351-9. PubMed ID: 6142656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis.
    Henry JJ; Elkins MB
    Dev Genes Evol; 2001 Sep; 211(8-9):377-87. PubMed ID: 11685571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twenty-four-hour pattern of circulation by radiotelemetry in the unrestrained dog.
    Ashkar E
    Am J Physiol; 1979 Mar; 236(3):R231-6. PubMed ID: 426101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardio-respiratory ontogeny during chronic carbon monoxide exposure in the clawed frog Xenopus laevis.
    Territo PR; Burggren WW
    J Exp Biol; 1998 May; 201(Pt 9):1461-72. PubMed ID: 9547325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lateral line system in anuran tadpoles: neuromast morphology, arrangement, and innervation.
    Quinzio S; Fabrezi M
    Anat Rec (Hoboken); 2014 Aug; 297(8):1508-22. PubMed ID: 24863412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood pressure control in a larval amphibian, Xenopus laevis.
    Warburton SJ; Fritsche R
    J Exp Biol; 2000 Jul; 203(Pt 13):2047-52. PubMed ID: 10851121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic effects of anti-G suit inflation in a 1-G environment.
    Seaworth JF; Jennings TJ; Howell LL; Frazier JW; Goodyear CD; Grassman ED
    J Appl Physiol (1985); 1985 Oct; 59(4):1145-51. PubMed ID: 4055594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of swimming rhythmicity in post-embryonic Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1991 Nov; 246(1316):147-53. PubMed ID: 1685239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effects of ethanol on cardiac output and its derivatives in spontaneously hypertensive and normotensive rats.
    Abdel-Rahman AA
    J Pharmacol Exp Ther; 1994 Dec; 271(3):1150-8. PubMed ID: 7996420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerial respiration facilitates growth in suspension-feeding anuran larvae (Xenopus laevis).
    Wassersug RJ; Murphy AM
    Exp Biol; 1987; 46(3):141-7. PubMed ID: 3582584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.