These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 7503461)

  • 1. Investigating routes to chaos in the guinea-pig cochlea using the continuous wavelet transform and the short-time Fourier transform.
    Teich MC; Heneghan C; Khanna SM; Flock A; Ulfendahl M; Brundin L
    Ann Biomed Eng; 1995; 23(5):583-607. PubMed ID: 7503461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STFT or CWT for the detection of Doppler ultrasound embolic signals.
    Gonçalves IB; Leiria A; Moura MM
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):964-76. PubMed ID: 23576393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear response to amplitude-modulated waves in the apical turn of the guinea pig cochlea.
    Khanna SM
    Hear Res; 2002 Dec; 174(1-2):107-23. PubMed ID: 12433402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical nonlinearity in the apical turn of the guinea pig organ of Corti.
    Hao LF; Khanna SM
    Hear Res; 2000 Oct; 148(1-2):31-46. PubMed ID: 10978823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous cellular vibrations in the guinea-pig cochlea.
    Keilson SE; Khanna SM; Ulfendahl M; Teich MC
    Acta Otolaryngol; 1993 Sep; 113(5):591-7. PubMed ID: 8266784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency analysis of the second cardiac sound in phonocardiogram signals.
    Debbal SM; Bereksi-Reguig F
    Med Phys; 2005 Sep; 32(9):2911-7. PubMed ID: 16266105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Frequency Distribution of Seismocardiographic Signals: A Comparative Study.
    Taebi A; Mansy HA
    Bioengineering (Basel); 2017 Apr; 4(2):. PubMed ID: 28952511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.
    Komorowski D; Pietraszek S
    J Med Syst; 2016 Jan; 40(1):10. PubMed ID: 26573647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of carotid disease with the application of STFT and CWT methods.
    Hardalaç F; Yildirim H; Serhatlioğlu S
    Comput Biol Med; 2007 Jun; 37(6):785-92. PubMed ID: 16997292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelet transform-based multipitch estimation in polyphonic music.
    Kumar N; Kumar R
    Heliyon; 2020 Jan; 6(1):e03243. PubMed ID: 32042974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reticular lamina vibrations in the apical turn of a living guinea pig cochlea.
    Khanna SM; Hao LF
    Hear Res; 1999 Jun; 132(1-2):15-33. PubMed ID: 10392544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application.
    Kiymik MK; Güler I; Dizibüyük A; Akin M
    Comput Biol Med; 2005 Oct; 35(7):603-16. PubMed ID: 15809098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bileaflet mechanical valve sound analysis using a continuous wavelet transform.
    Sugiki H; Shiiya N; Murashita T; Yasuda K
    J Artif Organs; 2006; 9(1):42-9. PubMed ID: 16614801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A second, low-frequency mode of vibration in the intact mammalian cochlea.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2003 Mar; 113(3):1544-50. PubMed ID: 12656389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):345-54. PubMed ID: 15121004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the discrete wavelet transform for time-frequency analysis of the surface EMG signal.
    Constable R; Thornhill RJ
    Biomed Sci Instrum; 1993; 29():121-7. PubMed ID: 8329582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of the wavelet transform to describe embolic signals.
    Aydin N; Padayachee S; Markus HS
    Ultrasound Med Biol; 1999 Jul; 25(6):953-8. PubMed ID: 10461724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms.
    Ryan ED; Cramer JT; Egan AD; Hartman MJ; Herda TJ
    J Electromyogr Kinesiol; 2008 Feb; 18(1):54-67. PubMed ID: 17070700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.