These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7503461)

  • 21. [Extracting and analyzing rabbit somatosensory evoked potential on the basis of continuous wavelet transform and multi-resolution analysis].
    Li Z; Zhao Z; Liu S; Xie Z; Lu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):504-8. PubMed ID: 17713249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of time-frequency methods for analyzing stimulus frequency otoacoustic emissions.
    Biswal M; Mishra SK
    J Acoust Soc Am; 2018 Feb; 143(2):626. PubMed ID: 29495731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform.
    Liu S; Wang D; Li T; Chen G; Li Z; Peng Q
    Rev Sci Instrum; 2011 Feb; 82(2):023103. PubMed ID: 21361569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea.
    Zinn C; Maier H; Zenner H; Gummer AW
    Hear Res; 2000 Apr; 142(1-2):159-83. PubMed ID: 10748337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical preprocessing of amplitude-modulated sounds in the apex of the cochlea.
    Cooper NP
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):353-8. PubMed ID: 17065829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelet-based segmentation and feature extraction of heart sounds for intelligent PDA-based phonocardiography.
    Nazeran H
    Methods Inf Med; 2007; 46(2):135-41. PubMed ID: 17347743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the effects of vasodilator drugs on the turbulent sound caused by femoral artery stenosis using short-term Fourier and wavelet transform methods.
    Akay M; Akay YM; Welkowitz W; Lewkowicz S
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):921-8. PubMed ID: 7959798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of wavelet and short time Fourier transform methods in the analysis of EMG signals.
    Canal MR
    J Med Syst; 2010 Feb; 34(1):91-4. PubMed ID: 20192059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear analysis of wheezes using wavelet bicoherence.
    Taplidou SA; Hadjileontiadis LJ
    Comput Biol Med; 2007 Apr; 37(4):563-70. PubMed ID: 17010961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders.
    Huang YX; Schmitt FG; Hermand JP; Gagne Y; Lu ZM; Liu YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016208. PubMed ID: 21867274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear cochlear mechanics.
    Zweig G
    J Acoust Soc Am; 2016 May; 139(5):2561. PubMed ID: 27250151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.
    Ergen B; Tatar Y; Gulcur HO
    Comput Methods Biomech Biomed Engin; 2012; 15(4):371-81. PubMed ID: 22414076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral characteristics of the responses of primary auditory-nerve fibers to amplitude-modulated signals.
    Khanna SM; Teich MC
    Hear Res; 1989 May; 39(1-2):143-57. PubMed ID: 2737961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of wheezes using wavelet higher order spectral features.
    Taplidou SA; Hadjileontiadis LJ
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1596-610. PubMed ID: 20176540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sound-induced displacement responses in the plane of the organ of Corti in the isolated guinea-pig cochlea.
    Morioka I; Reuter G; Reiss P; Gummer AW; Hemmert W; Zenner HP
    Hear Res; 1995 Mar; 83(1-2):142-50. PubMed ID: 7607980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats.
    Richard N; Laursen B; Grupe M; Drewes AM; Graversen C; Sørensen HB; Bastlund JF
    J Neural Eng; 2017 Apr; 14(2):026012. PubMed ID: 28177924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Instantaneous frequency and amplitude identification using wavelets: application to glass structure.
    Harrop JD; Taraskin SN; Elliott SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026703. PubMed ID: 12241314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digital signal processing for velocity measurements in dynamical material's behaviour studies.
    Devlaminck J; Luc J; Chanal PY
    Rev Sci Instrum; 2014 Mar; 85(3):035109. PubMed ID: 24689622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.