These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7503469)

  • 21. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation.
    Cherelle P; Grosu V; Cestari M; Vanderborght B; Lefeber D
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):145. PubMed ID: 28105954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint stiffness of the ankle during walking after successful mobile-bearing total ankle replacement.
    Houdijk H; Doets HC; van Middelkoop M; Dirkjan Veeger HE
    Gait Posture; 2008 Jan; 27(1):115-9. PubMed ID: 17462899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of Optimized Prosthetic Ankle Designs That Are Based on a Hydraulic Variable Displacement Actuator (VDA).
    Gardiner J; Bari AZ; Kenney L; Twiste M; Moser D; Zahedi S; Howard D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2418-2426. PubMed ID: 29220324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces.
    Nickel E; Sensinger J; Hansen A
    J Rehabil Res Dev; 2014; 51(5):803-14. PubMed ID: 25333672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematic comparison of walking on uneven ground using powered and unpowered prostheses.
    Gates DH; Aldridge JM; Wilken JM
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):467-72. PubMed ID: 23602128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translational and rotational joint power terms in a six degree-of-freedom model of the normal ankle complex.
    Buczek FL; Kepple TM; Siegel KL; Stanhope SJ
    J Biomech; 1994 Dec; 27(12):1447-57. PubMed ID: 7806552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of methods for the calculation of energy storage and return in a dynamic elastic response prosthesis.
    Geil MD; Parnianpour M; Quesada P; Berme N; Simon S
    J Biomech; 2000 Dec; 33(12):1745-50. PubMed ID: 11006404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.
    Ficanha EM; Rastgaar M; Kaufman KR
    J Rehabil Res Dev; 2015; 52(1):97-112. PubMed ID: 26186014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forces and moments in knee-ankle-foot orthoses while walking on irregular surfaces: a case series study.
    Andrysek J; Klejman S; Kooy J
    Prosthet Orthot Int; 2014 Apr; 38(2):104-13. PubMed ID: 23722598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Software tool for the prosthetic foot modeling and stiffness optimization.
    Strbac M; Popović DB
    Comput Math Methods Med; 2012; 2012():421796. PubMed ID: 22536296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
    Caputo JM; Collins SH
    Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.