BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 7503544)

  • 21. Site-specific DNA damage induced by NADH in the presence of copper(II): role of active oxygen species.
    Oikawa S; Kawanishi S
    Biochemistry; 1996 Apr; 35(14):4584-90. PubMed ID: 8605209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S; Huling SG; Ko S
    Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-electron reduction of chromium(VI) by alpha-lipoic acid and related hydroxyl radical generation, dG hydroxylation and nuclear transcription factor-kappaB activation.
    Chen F; Ye J; Zhang X; Rojanasakul Y; Shi X
    Arch Biochem Biophys; 1997 Feb; 338(2):165-72. PubMed ID: 9028868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for molecular oxygen in the formation of DNA damage during the reduction of the carcinogen chromium (VI) by glutathione.
    Kortenkamp A; Casadevall M; Faux SP; Jenner A; Shayer RO; Woodbridge N; O'Brien P
    Arch Biochem Biophys; 1996 May; 329(2):199-207. PubMed ID: 8638952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione.
    Milne L; Nicotera P; Orrenius S; Burkitt MJ
    Arch Biochem Biophys; 1993 Jul; 304(1):102-9. PubMed ID: 8323275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of 8-hydroxy-2'-deoxyguanosine following treatment of 2'-deoxyguanosine or DNA by hydrogen peroxide or glutathione.
    Abu-Shakra A; Zeiger E
    Mutat Res; 1997 Apr; 390(1-2):45-50. PubMed ID: 9150751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of reactive oxygen species by Co(II) from H2O2 in the presence of chelators in relation to DNA damage and 2'-deoxyguanosine hydroxylation.
    Mao Y; Liu KJ; Jiang JJ; Shi X
    J Toxicol Environ Health; 1996 Jan; 47(1):61-75. PubMed ID: 8568912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the fenton reaction in wine.
    Elias RJ; Waterhouse AL
    J Agric Food Chem; 2010 Feb; 58(3):1699-707. PubMed ID: 20047324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.
    Pichorner H; Metodiewa D; Winterbourn CC
    Arch Biochem Biophys; 1995 Nov; 323(2):429-37. PubMed ID: 7487108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species.
    Sandström BE; Svoboda P; Granström M; Harms-Ringdahl M; Candeias LP
    Free Radic Biol Med; 1997; 23(5):744-53. PubMed ID: 9296451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of porphyrinogen oxidation by mercuric ion. II. Promotion of oxidation from the interaction of mercuric ion, glutathione, and mitochondria-generated hydrogen peroxide.
    Woods JS; Calas CA; Aicher LD
    Mol Pharmacol; 1990 Aug; 38(2):261-6. PubMed ID: 2385233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug-induced protein free radical formation is attenuated by unsaturated fatty acids by scavenging drug-derived phenyl radical metabolites.
    Narwaley M; Michail K; Arvadia P; Siraki AG
    Chem Res Toxicol; 2011 Jul; 24(7):1031-9. PubMed ID: 21671642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vanadium(IV)-mediated free radical generation and related 2'-deoxyguanosine hydroxylation and DNA damage.
    Shi X; Jiang H; Mao Y; Ye J; Saffiotti U
    Toxicology; 1996 Jan; 106(1-3):27-38. PubMed ID: 8571399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight.
    Nieto-Juarez JI; Pierzchła K; Sienkiewicz A; Kohn T
    Environ Sci Technol; 2010 May; 44(9):3351-6. PubMed ID: 20356037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lunasin peptide purified from Solanum nigrum L. protects DNA from oxidative damage by suppressing the generation of hydroxyl radical via blocking fenton reaction.
    Jeong JB; De Lumen BO; Jeong HJ
    Cancer Lett; 2010 Jul; 293(1):58-64. PubMed ID: 20083341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: an EPR study.
    Jansson PJ; Hawkins CL; Lovejoy DB; Richardson DR
    J Inorg Biochem; 2010 Nov; 104(11):1224-8. PubMed ID: 20719391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation of thiol drugs and biochemicals by the lactoperoxidase/hydrogen peroxide system.
    Mottley C; Toy K; Mason RP
    Mol Pharmacol; 1987 Apr; 31(4):417-21. PubMed ID: 3033467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of hydroxy substituent on the prooxidant action of naphthoquinone compounds.
    Murakami K; Haneda M; Iwata S; Yoshino M
    Toxicol In Vitro; 2010 Apr; 24(3):905-9. PubMed ID: 19961919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.