BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 7503545)

  • 1. Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes.
    Hundal T; Forsmark-Andrée P; Ernster L; Andersson B
    Arch Biochem Biophys; 1995 Dec; 324(1):117-22. PubMed ID: 7503545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scavenging of superoxide generated in photosystem I by plastoquinol and other prenyllipids in thylakoid membranes.
    Kruk J; Jemioła-Rzemińska M; Burda K; Schmid GH; Strzałka K
    Biochemistry; 2003 Jul; 42(28):8501-5. PubMed ID: 12859196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stromal over-reduction by high-light stress as measured by decreases in P700 oxidation by far-red light and its physiological relevance.
    Endo T; Kawase D; Sato F
    Plant Cell Physiol; 2005 May; 46(5):775-81. PubMed ID: 15788424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions.
    Bukhov NG; Sridharan G; Egorova EA; Carpentier R
    Biochim Biophys Acta; 2003 Jun; 1604(2):115-23. PubMed ID: 12765768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transport between plastoquinone and chlorophyll Ai in chloroplasts. II. Reaction kinetics and the function of plastocyanin in situ.
    Haehnel W
    Biochim Biophys Acta; 1977 Mar; 459(3):418-41. PubMed ID: 849434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thylakoid protein phosphorylation and the thiol redox state.
    Carlberg I; Rintamäki E; Aro EM; Andersson B
    Biochemistry; 1999 Mar; 38(10):3197-204. PubMed ID: 10074375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of intermediate steps involved in donor-side-induced photoinhibition of photosystem II.
    Jegerschöld C; Styring S
    Biochemistry; 1996 Jun; 35(24):7794-801. PubMed ID: 8672480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol regulation of the thylakoid electron transport chain--a missing link in the regulation of photosynthesis?
    Johnson GN
    Biochemistry; 2003 Mar; 42(10):3040-4. PubMed ID: 12627970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Electron paramagnetic resonance of electron transport in photosynthetic systems. XI. Effects of photosynthetic control: dependence of the rate of electron transport on the energization of bean chloroplast thylakoid membrane].
    Khomutov GB; Tikhonov AN; Ruuge EK
    Mol Biol (Mosk); 1981; 15(1):182-98. PubMed ID: 6278291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.
    Miyake C; Amako K; Shiraishi N; Sugimoto T
    Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response.
    Rumeau D; Peltier G; Cournac L
    Plant Cell Environ; 2007 Sep; 30(9):1041-51. PubMed ID: 17661746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of protein crowding, order and mobility for photosynthetic membrane functions.
    Kirchhoff H
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):967-70. PubMed ID: 18793171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool.
    Escoubas JM; Lomas M; LaRoche J; Falkowski PG
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10237-41. PubMed ID: 7479759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of energy dissipation in photosystem I by the redox state of the plastoquinone pool.
    Joly D; Carpentier R
    Biochemistry; 2007 May; 46(18):5534-41. PubMed ID: 17432831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pigment quantitation and analysis by HPLC reverse phase chromatography: a characterization of antenna size in oxygen-evolving photosystem II preparations from cyanobacteria and plants.
    Patzlaff JS; Barry BA
    Biochemistry; 1996 Jun; 35(24):7802-11. PubMed ID: 8672481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress induced by lead in chloroplast of spinach.
    Wu X; Huang H; Liu X; Chen L; Liu C; Su M; Hong F
    Biol Trace Elem Res; 2008; 126(1-3):257-68. PubMed ID: 18709336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced content of the quinone acceptor QA in photosystem II complexes isolated from thylakoid membranes after prolonged photoinhibition under anaerobic conditions.
    Koivuniemi A; Swiezewska E; Aro EM; Styring S; Andersson B
    FEBS Lett; 1993 Aug; 327(3):343-6. PubMed ID: 8348961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-adaptation of photosystem II is mediated by the plastoquinone pool.
    Ahrling KA; Peterson S
    Biochemistry; 2003 Jul; 42(25):7655-62. PubMed ID: 12820874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobleaching of photosynthetic pigments in spinach thylakoid membranes. Effect of temperature, oxygen and DCMU.
    Velitchkova MY; Picorel R
    Biophys Chem; 2004 Jan; 107(1):25-32. PubMed ID: 14871598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.