BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7503699)

  • 1. Molecular cloning and complete nucleotide sequence of carnation Italian ringspot tombusvirus genomic and defective interfering RNAs.
    Rubino L; Burgyan J; Russo M
    Arch Virol; 1995; 140(11):2027-39. PubMed ID: 7503699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide sequence, genomic organization and synthesis of infectious transcripts from a full-length clone of artichoke mottle crinkle virus.
    Tavazza M; Lucioli A; Calogero A; Pay A; Tavazza R
    J Gen Virol; 1994 Jul; 75 ( Pt 7)():1515-24. PubMed ID: 8021582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of tombusvirus open reading frames 1 and 2 is sufficient for the replication of defective interfering, but not satellite, RNA.
    Rubino L; Pantaleo V; Navarro B; Russo M
    J Gen Virol; 2004 Oct; 85(Pt 10):3115-3122. PubMed ID: 15448375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complete nucleotide sequence and synthesis of infectious RNA of genomic and defective interfering RNAs of TBSV-P.
    Szittya G; Salamon P; Burgyán J
    Virus Res; 2000 Sep; 69(2):131-6. PubMed ID: 11018282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that ORF 1 and 2 are the only virus-encoded replicase genes of cymbidium ringspot tombusvirus.
    Kollár A; Burgyán J
    Virology; 1994 May; 201(1):169-72. PubMed ID: 8178483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of sequence elements of tombusvirus-associated defective interfering RNAs required for symptom modulation.
    Hornyik C; Havelda Z; Burgyán J
    Arch Virol; 2006 Mar; 151(3):625-33. PubMed ID: 16328149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of defective interfering RNA dimers of cymbidium ringspot tombusvirus.
    Dalmay T; Szittya G; Burgyán J
    Virology; 1995 Mar; 207(2):510-7. PubMed ID: 7886955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host effects and sequences essential for accumulation of defective interfering RNAs of cucumber necrosis and tomato bushy stunt tombusviruses.
    Chang YC; Borja M; Scholthof HB; Jackson AO; Morris TJ
    Virology; 1995 Jun; 210(1):41-53. PubMed ID: 7793079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single amino acid substitution in the ORF1 of cymbidium ringspot virus determines the accumulation of two satellite RNAs.
    Rubino L; Russo M
    Virus Res; 2012 Sep; 168(1-2):84-7. PubMed ID: 22709553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 5'-terminal region of a tombusvirus genome determines the origin of multivesicular bodies.
    Burgyan J; Rubino L; Russo M
    J Gen Virol; 1996 Aug; 77 ( Pt 8)():1967-74. PubMed ID: 8760449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions.
    White KA; Morris TJ
    J Virol; 1994 Jan; 68(1):14-24. PubMed ID: 8254723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unique N-terminal sequence in the Carnation Italian ringspot virus p36 replicase-associated protein interacts with the host cell ESCRT-I component Vps23.
    Richardson LG; Clendening EA; Sheen H; Gidda SK; White KA; Mullen RT
    J Virol; 2014 Jun; 88(11):6329-44. PubMed ID: 24672030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of a novel satellite RNA associated with tomato bushy stunt virus infections.
    Rubino L; Russo M
    J Gen Virol; 2010 Sep; 91(Pt 9):2393-401. PubMed ID: 20484559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of resistance to cymbidium ringspot virus in transgenic plants expressing a full-length viral replicase gene.
    Rubino L; Russo M
    Virology; 1995 Sep; 212(1):240-3. PubMed ID: 7676638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The p36 and p95 replicase proteins of Carnation Italian ringspot virus cooperate in stabilizing defective interfering RNA.
    Pantaleo V; Rubino L; Russo M
    J Gen Virol; 2004 Aug; 85(Pt 8):2429-2433. PubMed ID: 15269385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of DI RNA formation in tombusviruses: dissecting the requirement for primer extension by the tombusvirus RNA dependent RNA polymerase in vitro.
    Cheng CP; Pogany J; Nagy PD
    Virology; 2002 Dec; 304(2):460-73. PubMed ID: 12504585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved motifs in a tombusvirus polymerase modulate genome replication, subgenomic transcription, and amplification of defective interfering RNAs.
    Gunawardene CD; Jaluba K; White KA
    J Virol; 2015 Mar; 89(6):3236-46. PubMed ID: 25568204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleotide sequence and proposed genome organization of oat chlorotic stunt virus, a new soil-borne virus of cereals.
    Boonham N; Henry CM; Wood KR
    J Gen Virol; 1995 Aug; 76 ( Pt 8)():2025-34. PubMed ID: 7636483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombination between defective tombusvirus RNAs generates functional hybrid genomes.
    White KA; Morris TJ
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3642-6. PubMed ID: 8170961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New satellite RNAs, but no DI RNAs, are found in natural populations of tomato bushy stunt tombusvirus.
    Celix A; Rodriguez-Cerezo E; Garcia-Arenal F
    Virology; 1997 Dec; 239(2):277-84. PubMed ID: 9434719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.